Design of graphene-based hybrid waveguides for nonlinear applications

  • Vahid Khalili Sadaghiani
  • Mahdi ZavvariEmail author
  • Mohammad Bagher Tavakkoli
  • Ashkan Horri


The extraordinary properties of a monolayer graphene can be effectively utilized in integrated optoelectronic devices. Therefore, the optical properties and the effective parameters on the graphene’s conductivity are calculated at the telecom wavelength 1.55 µm. Next, the different types of photonic and plasmonic hybrid waveguides based on graphene are designed for nonlinear applications such as frequency conversion processes. The fundamental proposed structure consists of a LiNbO3 layer, a single graphene layer and a dielectric gap between the graphene and LiNbO3 to support the nonlinear applications such as second harmonic generation. The waveguide’s performance is analyzed in terms of the intensity of electric field, LiNbO3 thickness, the gap refractive index, mode effective index and propagation loss while the graphene’s chemical potential is varied with an applied gate voltage. According to the results, a sudden rise in propagation loss at µc = 0.493 eV (where the permittivity of graphene is almost zero) is observed. At last, a plasmonic hybrid waveguide consisting of a silver strip and a graphene layer placed between the metal and LiNbO3 layer is presented and the effect of the graphene’s chemical potential on the mode effective index and the propagation length are studied.


Graphene Hybrid waveguide Plasmonic Nonlinear applications 



  1. Ando, T., Zheng, Y., Suzuura, H.: Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002)ADSCrossRefGoogle Scholar
  2. Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)ADSCrossRefGoogle Scholar
  3. Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5), 3677–3694 (2012)CrossRefGoogle Scholar
  4. Beadie, G., et al.: Refractive index measurements of poly (methyl methacrylate)(PMMA) from 0.4–1.6 μm. Appl. Opt. 54(31), F139–F143 (2015)CrossRefGoogle Scholar
  5. Berciaud, S., et al.: Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9(1), 346–352 (2008)ADSCrossRefGoogle Scholar
  6. Bolotin, K.I., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)ADSCrossRefGoogle Scholar
  7. Cao, P., et al.: Atomic force microscopy characterization of room-temperature adlayers of small organic molecules through graphene templating. J. Am. Chem. Soc. 133(8), 2334–2337 (2011)CrossRefGoogle Scholar
  8. Casiraghi, C., et al.: Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)ADSCrossRefGoogle Scholar
  9. Chen, Y., et al.: Chemical vapor deposition of transfer-free graphene on SiO2/Si using a sacrificial copper film. In: 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE (2015)Google Scholar
  10. Chen, M., et al.: A symmetric terahertz graphene-based hybrid plasmonic waveguide. Opt. Commun. 376, 41–46 (2016)ADSCrossRefGoogle Scholar
  11. Christensen, J., et al.: Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1), 431–440 (2011)CrossRefGoogle Scholar
  12. Dai, D., et al.: Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt. Express 19(14), 12925–12936 (2011)ADSCrossRefGoogle Scholar
  13. Gao, W., et al.: Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9), 7806–7813 (2012)CrossRefGoogle Scholar
  14. Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)ADSCrossRefGoogle Scholar
  15. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)ADSCrossRefGoogle Scholar
  16. Gosciniak, J., Tan, D.T.: Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology (2013). CrossRefGoogle Scholar
  17. Gu, X., Lin, I.-T., Liu, J.-M.: Extremely confined terahertz surface plasmon-polaritons in graphene–metal structures. Appl. Phys. Lett. (2013). CrossRefGoogle Scholar
  18. Hayashi, S., Okamoto, T.: Plasmonics: visit the past to know the future. J. Phys. D Appl. Phys. (2012). CrossRefGoogle Scholar
  19. Hendry, E., et al.: Coherent nonlinear optical response of graphene. Phys. Rev. Lett. (2010). CrossRefGoogle Scholar
  20. Ishikawa, A., et al.: Deep subwavelength terahertz waveguides using gap magnetic plasmon. Phys. Rev. Lett. (2009). CrossRefGoogle Scholar
  21. Jablan, M., Buljan, H., Soljačić, M.: Plasmonics in graphene at infrared frequencies. Phys. Rev. B (2009). CrossRefGoogle Scholar
  22. Ju, L., et al.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630–634 (2011)ADSCrossRefGoogle Scholar
  23. Khurgin, J.: Graphene—a rather ordinary nonlinear optical material. Appl. Phys. Lett. (2014). CrossRefGoogle Scholar
  24. Koester, S.J., Li, M.: High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. (2012). CrossRefGoogle Scholar
  25. Li, Z., et al.: Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4(7), 532–535 (2008)CrossRefGoogle Scholar
  26. Liu, M., et al.: A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011)ADSCrossRefGoogle Scholar
  27. Liu, C.-H., et al.: Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273–278 (2014)ADSCrossRefGoogle Scholar
  28. Lu, W.B., et al.: Flexible transformation plasmonics using graphene. Opt. Express 21(9), 10475–10482 (2013)ADSCrossRefGoogle Scholar
  29. Mikhailov, S., Ziegler, K.: New electromagnetic mode in graphene. Phys. Rev. Lett. (2007). CrossRefGoogle Scholar
  30. Nair, R.R., et al.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)ADSCrossRefGoogle Scholar
  31. Nikogosyan, D.N.: Nonlinear Optical Crystals: A Complete Survey. Springer, Berlin (2006)Google Scholar
  32. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)ADSCrossRefGoogle Scholar
  33. Novoselov, K.S., et al.: A roadmap for graphene. Nature 490(7419), 192–200 (2012)ADSCrossRefGoogle Scholar
  34. Ooi, K.J., et al.: Mid-infrared active graphene nanoribbon plasmonic waveguide devices. JOSA B 30(12), 3111–3116 (2013)ADSCrossRefGoogle Scholar
  35. Oulton, R.F., et al.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008)CrossRefGoogle Scholar
  36. Pirkle, A., et al.: The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99(12), 122108 (2011)ADSCrossRefGoogle Scholar
  37. Roddaro, S., et al.: The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett. 7(9), 2707–2710 (2007)ADSCrossRefGoogle Scholar
  38. Sun, Z., et al.: Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)CrossRefGoogle Scholar
  39. Wang, F., et al.: Gate-variable optical transitions in graphene. Science 320(5873), 206–209 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Arak BranchIslamic Azad UniversityArakIran
  2. 2.Microwave and Antenna Research Center, Urmia BranchIslamic Azad UniversityUrmiaIran

Personalised recommendations