Advertisement

Generation of two-color terahertz radiation using Smith–Purcell emitter and periodic dielectric layers

  • Kiyanoush Goudarzi
  • Samiye MatloubEmail author
  • Ali Rostami
Article
  • 15 Downloads

Abstract

This paper proposes and simulates three vacuum state devices each of which generates two-color terahertz radiation by Smith–Purcell emitter and dielectric layers. Each of the devices is a SiO2-made vacuum tube consisting of a Smith–Purcell emitter located at the bottom of the tube and also periodic dielectric layers located at the top. Smith–Purcell structure is a metal grating above which electron beam is generated closely by the cathode and are collected by a collector in another side of the grating. The emitter generates two terahertz radiations including evanescent and coherent Smith–Purcell radiations. While the evanescent radiation is the first harmonic of the emitted radiation, coherent Smith–Purcell radiation is the second and dominant one. The coherent Smith–Purcell radiation is emitted in a specific angle calculated by Smith–Purcell relation. The emitted coherent Smith–Purcell radiation coincides with periodic grating dielectric layers made of Si and SiO2 on top of the vacuum tube, and the transmitted pulse is transformed to two-terahertz pulses. The output of each device is a two-color terahertz pulse. Two generated terahertz wavelengths are very applicable in pump–probe experiments.

Keywords

Smith–Purcell radiation Periodic dielectric layers Plasmons Dispersion diagram 

Notes

References

  1. Appleby, R., Anderton, R.N.: Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc. IEEE 95(8), 1683–1690 (2007)CrossRefGoogle Scholar
  2. Babushkin, I., Skupin, S., Herrmann, J.: Generation of terahertz radiation from ionizing two-color laser pulses in Ar filled metallic hollow waveguides. Opt. Express 18(9), 9658–9663 (2010)ADSCrossRefGoogle Scholar
  3. Bevilacqua, S., Novoselov, E., Cherednichenko, S., Shibata, H., Tokura, Y.: MgB2 hot-electron bolometer mixers at terahertz frequencies. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2015)CrossRefGoogle Scholar
  4. Bluem, H.P., Jackson, R.H., Jarvis, J.D., Todd, A.M.M., Gardelle, J., Modin, M., Donohue, J.T.: First lasing from a high-power cylindrical grating Smith–Purcell device. IEEE Trans. Plasma Sci. 43(9), 3176–3184 (2015)ADSCrossRefGoogle Scholar
  5. Bockelt, A., Lopez, J.P., Vidal, B.: All-fiber centralized architecture for parallel terahertz sensors. IEEE Trans. Terahertz Sci. Technol. 5(1), 137–144 (2015)ADSCrossRefGoogle Scholar
  6. Chen, L.X., Shaw, G.B., Novozhilova, I., Liu, T., Jennings, G., Attenkofer, K., Meyer, G.J., Coppens, P.: MLCT state structure and dynamics of a Copper(I) Diimine complex characterized by pump–probe X-ray and laser spectroscopies and DFT calculations. J. Am. Chem. Soc. 125(23), 7022–7034 (2003)CrossRefGoogle Scholar
  7. Chen, Z., Hefferman, G., Wei, T.: A low bandwidth DFB laser-based interrogator for terahertz-range fiber Bragg grating sensors. IEEE Photon. Technol. Lett. 24(4), 365–368 (2017)ADSCrossRefGoogle Scholar
  8. Cheon, H., Yang, H.J., Son, J.H.: Toward clinical cancer imaging using terahertz spectroscopy. IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017)CrossRefGoogle Scholar
  9. Dahlberg, K., Kiuru, T., Mallat, J., Narhi, T., Raisanen, A.V.: Mixer-based characterization of millimeter-wave and terahertz single-anode and antiparallel Schottky diodes. IEEE Trans. Terahertz Sci. Technol. 4(5), 552–559 (2014)ADSCrossRefGoogle Scholar
  10. Dai, J., Zhang, J., Zhang, W., Grischkowsky, D.: Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. Opt. Soc. Am. 21(7), 1379–1386 (2004)ADSCrossRefGoogle Scholar
  11. Dai, J., Karpowicz, N., Zhang, X.C.: Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett. 103(2), 023001–023005 (2009)ADSCrossRefGoogle Scholar
  12. Davies, A.G., Burnett, A.D., Fan, W., Linfield, E.H., Cunningham, J.E.: Terahertz spectroscopy of explosives and drugs. Mater. Today 11(3), 18–26 (2008)CrossRefGoogle Scholar
  13. Ding, Y.J.: Progress in terahertz sources based on difference-frequency generation. Opt. Soc. Am. 31(11), 2696–2711 (2014)ADSCrossRefGoogle Scholar
  14. Donohue, J.T., Gardelle, J.: Simulation of Smith–Purcell terahertz radiation using a particle-in-cell code. Phys. Rev. Spec. Top. Accel. Beams 9(6), 060701–060708 (2006)ADSCrossRefGoogle Scholar
  15. Fathololoumi, S., Dupont, E., Chan, C.W.I., Wasilewski, Z.R., Laframboise, S.R., Ban, D., Matyas, A., Jirauschek, C., Hu, Q., Liu, H.C.: Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling. Opt. Express 20(4), 3866–3876 (2012)ADSCrossRefGoogle Scholar
  16. Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20(7), S266–S280 (2005)ADSCrossRefGoogle Scholar
  17. George, P.A., Strait, J., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., Rana, F., Spencer, M.G.: Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8(12), 4248–4251 (2008)ADSCrossRefGoogle Scholar
  18. Goudarzi, K., Matloub, S., Rostami, A.: Multi-wavelengths Terahertz emitter using graphene aperiodic super-cells. Optik 179, 379–384 (2019)ADSCrossRefGoogle Scholar
  19. He, Y., Parrott, E.P.J., Pherson, E.P.M.: Adaptive sampling for terahertz time-domain spectroscopy and imaging. IEEE Trans. Terahertz Sci. Technol. 7(2), 118–123 (2017)ADSCrossRefGoogle Scholar
  20. Hebling, J., Hoffmann, M.C., Hwang, H.H., Yeh, K.L., Nelson, K.A.: Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements. Phys. Rev. B 81(3), 035201–035206 (2010)ADSCrossRefGoogle Scholar
  21. Hoffmann, S., Hofmann, M.R.: Generation of Terahertz radiation with two color semiconductor lasers. Laser Photon. Rev. 1(1), 44–56 (2007)ADSCrossRefGoogle Scholar
  22. Hoffmann, S., Hofmann, M., Bründermann, E., Havenith, M.: Four-wave mixing and direct terahertz emission with two-color semiconductor lasers. Appl. Phys. Lett. 84(18), 3585–3587 (2004)ADSCrossRefGoogle Scholar
  23. Hoffmann, M.C., Hebling, J., Hwang, H.Y., Yeh, K.L., Nelson, K.A.: Impact ionization in InSb probed by terahertz pump—terahertz probe spectroscopy. Phys. Rev. B 79(16), 16120–16125 (2009a)CrossRefGoogle Scholar
  24. Hoffmann, M.C., Hebling, J., Hwang, H.Y., Yeh, K.L., Nelson, K.A.: THz-pump/THz-probe spectroscopy of semiconductors at high field strengths. J. Opt. Soc. Am. B 26(9), A29–A34 (2009b)CrossRefGoogle Scholar
  25. Huang, Y., Zhong, S., Shen, Y., Yu, Y., Cui, D.: Graphene/insulator stack based ultrasensitive terahertz sensor with surface plasmon resonance. IEEE Photon. J. 9(6), 5900911–5900922 (2017a)Google Scholar
  26. Huang, Y., Zhong, S., Yao, H., Cui, D.: Tunable terahertz plasmonic sensor based on graphene/insulator stacks. IEEE Photon. J. 9(1), 5900210–5900220 (2017b)Google Scholar
  27. Inoue, I., Inubushi, Y., Sato, T., Tono, K., Katayama, T., Kameshima, T., Ogawa, K., Togashi, T., Owada, S., Amemiya, Y., Tanaka, T., Hara, T., Yabashi, M.: Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme. PNAS 113(6), 1492–1497 (2016)ADSCrossRefGoogle Scholar
  28. Jepsen, P.U., Schairer, W., Libon, I.H., Lemmer, U., Hecker, N.E., Birkholz, M., Lips, K., Schall, M.: Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements. Appl. Phys. Lett. 79(9), 1291–1293 (2001)ADSCrossRefGoogle Scholar
  29. Kawase, K., Ogawa, Y., Watanabe, Y.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)ADSCrossRefGoogle Scholar
  30. Khalid, A., Pilgrim, N.J., Dunn, G.M., Holland, M.C., Stanley, C.R., Thayne, I.G., Cumming, D.R.S.: A planar gunn diode operating above 100 GHz. IEEE Electron Dev. Lett. 28(10), 849–851 (2007)ADSCrossRefGoogle Scholar
  31. Khalid, A., Dunn, G.M., Macpherson, R.F., Thoms, S., Macintyre, D., Li, C., Steer, M.J., Papageorgiou, V., Thayne, I.G., Kuball, M., Oxley, C.H., Bajo, M.M., Stephen, A., Glover, J., Cumming, D.R.S.: Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. J. Appl. Phys. 115(11), 114502–114508 (2014)ADSCrossRefGoogle Scholar
  32. Khullar, R., Mishra, G., Sharma, G.: Effects of sextupolar undulator magnetic field contributions on inverse free electron laser accelerator. IEEE Trans. Plasma Sci. 43(5), 1722–1728 (2015)ADSCrossRefGoogle Scholar
  33. Knap, W., Rumyantsev, S., Vitiello, M.S., Coquillat, D., Blin, S., Dyakonova, N., Shur, M., Teppe, F., Tredicucci, A., Nagatsuma, T.: Nanometer size field effect transistors for terahertz detectors. Nanotechnology 24(21), 214002–214012 (2013)ADSCrossRefGoogle Scholar
  34. Kumar, S., Hu, Q., Reno, J.L.: 186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Appl. Phys. Lett. 94(13), 131105–131108 (2009)ADSCrossRefGoogle Scholar
  35. Li, D., Imasaki, K., Yang, Z., Park, G.S.: Three-dimensional simulation of super-radiant Smith–Purcell radiation. Appl. Phys. Lett. 88, 201501–201502 (2006)ADSCrossRefGoogle Scholar
  36. Liu, H.B., Zhong, H., Karpowicz, N., Chen, Y., Zhang, X.C.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95(8), 1514–1527 (2007)CrossRefGoogle Scholar
  37. Liu, W., Li, W., He, Z., Jia, Q.: Theory of the special Smith-Purcell radiation from a rectangular grating. AIP Adv. 5(12), 127135–127145 (2015)ADSCrossRefGoogle Scholar
  38. Liu, Z.Y., Liu, L.Y., Yang, J., Wu, N.J.: A CMOS fully integrated 860-GHz terahertz sensor. IEEE Trans. Terahertz Sci. Technol. 7(4), 455–465 (2017)ADSCrossRefGoogle Scholar
  39. Lu, W., Argyros, A.: Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe. J. Lightwave Technol. 32(23), 4621–4627 (2014)CrossRefGoogle Scholar
  40. Ma, Y., Huu, N.N., Zhou, J., Maeda, H., Wu, Q., Eldlio, M., Pistora, J., Cada, M.: Mach-Zehnder interferometer-based integrated terahertz temperature sensor. IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017)CrossRefGoogle Scholar
  41. Marinchio, H., Chusseau, L., Torres, J., Nouvel, P., Varani, L., Sabatini, G., Palermo, C., Shiktorov, P., Starikov, E., Gruzinskis, V.: Room-temperature terahertz mixer based on the simultaneous electronic and optical excitations of plasma waves in a field effect transistor. Appl. Phys. Lett. 96(1), 013502–013505 (2010)ADSCrossRefGoogle Scholar
  42. Marks, H.S., Gover, A., Borodin, D., Damti, A., Kanter, M., Lasser, Y., Einat, M., Vashdi, Y., Lurie, Y., Friedman, A.: Radiation power out-coupling optimization of a free electron laser oscillator. IEEE Trans. Microw. Theory Technol. 64(3), 1006–1014 (2016)Google Scholar
  43. Marks, H.S., Lurie, Y., Dyunin, E., Gover, A.: Enhancing electron beam radiative energy extraction efficiency in free-electron laser oscillators through beam energy ramping. IEEE Trans. Microw. Theory Technol. 65(11), 4218–4224 (2017)ADSCrossRefGoogle Scholar
  44. Mechelen, J.L.M.V., Kuzmenko, A.B., Merbold, H.: Stratified dispersive model for material characterization using terahertz time-domain spectroscopy. Opt. Lett. 39(13), 3853–3856 (2014)ADSCrossRefGoogle Scholar
  45. Mikhailov, S.A.: Graphene-based voltage-tunable coherent terahertz emitter. Phys. Rev. 87(11), 115405–115411 (2013)CrossRefGoogle Scholar
  46. Mitrofanov, O., Khromova, I., Siday, T., Thompson, R.J., Ponomarev, A.N., Brener, I., Reno, J.L.: Near-field spectroscopy and imaging of subwavelength plasmonic terahertz resonators. IEEE Trans. Terahertz Sci. Technol. 6(3), 382–388 (2016)ADSCrossRefGoogle Scholar
  47. Mittleman, D.M.: Frontiers in terahertz sources and plasmonics. Nat. Photon. 7, 666–669 (2013)ADSCrossRefGoogle Scholar
  48. Naftalya, M., Miles, R.E.: Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties. J. Appl. Phys. 102(4), 043517–043523 (2007)ADSCrossRefGoogle Scholar
  49. Nakajima, M., Takubo, N., Hiroi, Z., Ueda, Y., Suemoto, T.: Study of photo-induced phenomena in VO2 by terahertz pump–probe spectroscopy. J. Lumin. 129(12), 1802–1805 (2009)CrossRefGoogle Scholar
  50. Nashima, S., Morikawa, O., Takata, K., Hangyo, M.: Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy. Appl. Phys. Lett. 79(24), 3923–3925 (2001)ADSCrossRefGoogle Scholar
  51. Peter, B.S., Yngvesson, S., Siqueira, P., Kelly, P., Khan, A., Glick, S., Karellas, A.: Development and testing of a single frequency terahertz imaging system for breast cancer detection. IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013)CrossRefGoogle Scholar
  52. Picon, A., Lehmann, C.S., Bostedt, C., Rudenko, A., Marinelli, A., Osipov, T., Rolles, D., Berrah, N., Bomme, C., Bucher, M., Doumy, G., Erk, B., Ferguson, K.R., Gorkhover, T., Ho, P.J., Kanter, E.P., Krassig, B., Krzywinski, J., Lutman, A.A., March, A.M., Moonshiram, D., Ray, D., Young, L., Pratt, S.T., Southworth, S.H.: Hetero-site-specific X-ray pump–probe spectroscopy for femtosecond intramolecular dynamics. Nat. Commun. 7, 11652–11658 (2016)ADSCrossRefGoogle Scholar
  53. Reid, C.B., MacPherson, E.P., Laufer, J.G., Gibson, A.P., Hebden, J.C., Wallace, V.P.: Accuracy and resolution of THz reflection spectroscopy for medical imaging. Phys. Med. Biol. 55(16), 4825–4838 (2010)CrossRefGoogle Scholar
  54. Rogalskl, A., Sizov, F.: Terahertz detectors and focal plane arrays. Poto-Electron. Rev. 19(3), 346–404 (2011)ADSGoogle Scholar
  55. Rotaru, M.D., Sykulski, J.K.: Improved sensitivity of terahertz label free bio-sensing application through trapped-mode resonances in planar resonators. IEEE Trans. Magn. 47(5), 1026–1029 (2011)ADSCrossRefGoogle Scholar
  56. Russer, J.A., Jirauschek, C., Szakmany, G.P., Schmidt, M., Orlov, A.O., Bernstein, G.H., Porod, W., Lugli, P., Russer, P.: High-speed antenna-coupled terahertz thermocouple detectors and mixers. IEEE Trans. Microw. Theory Tech. 63(12), 4236–4246 (2015)ADSCrossRefGoogle Scholar
  57. Sato, R., Komatsu, M., Ohki, Y., Fuse, N., Nakamichi, Y., Mizuno, M., Fukunaga, K.: Observation of water trees using terahertz spectroscopy and time-domain imaging. IEEE Trans. Dielectr. Electr. Insul. 18(5), 1570–1577 (2011)CrossRefGoogle Scholar
  58. Shin, Y.M., So, J.K., Jang, K.H., Won, J.H., Srivastava, A., Park, G.S.: Superradiant terahertz Smith–Purcell radiation from surface plasmon excited by counterstreaming electron beams. Appl. Phys. Lett. 90(3), 031502–031505 (2007)ADSCrossRefGoogle Scholar
  59. Siegel, P.H.: Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Technol. 52(10), 2438–2447 (2004)ADSCrossRefGoogle Scholar
  60. Smith, S.J., Purcell, E.M.: Visible light from localized surface charges moving across a grating. Phys. Rev. 92(4), 1069–1070 (1953)ADSCrossRefGoogle Scholar
  61. Spirito, D., Coquillat, D., Bonis, S.L.D., Lombardo, A., Bruna, M., Ferrari, A.C., Pellegrini, V., Tredicucci, A., Knap, W., Vitiello, M.S.: High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 104(6), 061111–061116 (2014)ADSCrossRefGoogle Scholar
  62. Strait, J.H., Wang, H., Shivaraman, S., Shields, V., Spencer, M., Rana, F.: Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett. 11(11), 4902–4906 (2011)ADSCrossRefGoogle Scholar
  63. Suzuki, M., Tonouchi, M.: Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses. Appl. Phys. Lett. 86(16), 163504–163507 (2005)ADSCrossRefGoogle Scholar
  64. Tanabea, T., Suto, K., Nishiwaza, J., Saito, K., Kimura, K.: Tunable terahertz wave generation in the 3- to 7-THz region from GaP. Appl. Phys. Lett. 83(2), 237–239 (2003)ADSCrossRefGoogle Scholar
  65. Uzawa, Y., Kroug, M., Kojima, T., Makise, K., Gonzalez, A., Saito, S., Fujii, Y., Kaneko, K., Terai, H., Wang, Z.: Design of terahertz SIS mixers using Nb/AlN/Nb junctions integrated with all-NbTiN tuning circuits. IEEE Trans. Appl. Supercond. 27(4), 1500705–1500710 (2017)CrossRefGoogle Scholar
  66. Vircarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegerini, V., Tredicucci, A.: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012)ADSCrossRefGoogle Scholar
  67. Vitiello, M.S., Coquillat, D., Viti, L., Ercolani, D., Teppe, F., Pitanti, A., Beltram, F., Sorba, L., Knap, W., Tredicucci, A.: Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. Nano Lett. 12(1), 96–101 (2011)ADSCrossRefGoogle Scholar
  68. Walther, C., Fischer, M., Scalari, G., Terazzi, R., Hoyler, N., Faist, J.: Quantum cascade lasers operating from 1.2 to 1.6 THz. Appl. Phys. Lett. 91(13), 131122–131125 (2007)ADSCrossRefGoogle Scholar
  69. Williams, B.S.: Terahertz quantum-cascade lasers. Nat. Photon. 1, 517–525 (2007)ADSCrossRefGoogle Scholar
  70. Williams, B.S., Kumar, S., Hu, Q., Reno, J.L.: High-power terahertz quantum-cascade lasers. Electron. Lett. 42(2), 89–91 (2006)CrossRefGoogle Scholar
  71. Wu, Q., Zhang, X.C.: Design and characterization of traveling-wave electrooptic terahertz sensors. IEEE J. Sel. Top. Quantum Electron. 2(3), 693–700 (1996)ADSCrossRefGoogle Scholar
  72. Xiang, Y., Zhu, J., Wu, L., You, Q., Ruan, B., Dai, X.: Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene. IEEE Photon. J. 10(1), 6800507–6800514 (2018)CrossRefGoogle Scholar
  73. Yang, L.A., Hao, Y., Yao, Q., Zhang, J.: Improved negative differential mobility model of GaN and AlGaN for a terahertz gunn diode. IEEE Trans. Electron Dev. 58(4), 1076–1083 (2011)ADSCrossRefGoogle Scholar
  74. Yang, X., Zhao, X., Yang, K., Liu, Y., Liu, Y., Fu, W., Luo, Y.: Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)CrossRefGoogle Scholar
  75. Yin, Y., Chen, H.: Enhanced superradiant Smith–Purcell radiation in a three-mirror quasi-optical cavity. IEEE Trans. Plasma Sci. 37(6), 1057–1061 (2009)ADSCrossRefGoogle Scholar
  76. Zhang, Y., Dong, L.: Enhanced coherent terahertz Smith–Purcell superradiation excited by two electron-beams. Opt. Express 20(20), 22627–22635 (2012)ADSCrossRefGoogle Scholar
  77. Zhang, Y., Zhou, Y., Dong, L.: THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure. Opt. Express 21(19), 21951–21960 (2013)ADSCrossRefGoogle Scholar
  78. Zhang, P., Ang, L.K., Gover, A.: Enhancement of coherent Smith–Purcell radiation at terahertz frequency by optimized grating, prebunched beams, and open cavity. Phys. Rev. Spec. Top. Accel. Beams 18(2), 020702–020715 (2015)ADSCrossRefGoogle Scholar
  79. Zhang, P., Zhang, Y., Tang, M.: Enhanced THz Smith–Purcell radiation based on the grating grooves with holes array. Opt. Express 25(10), 10901–10910 (2017)ADSCrossRefGoogle Scholar
  80. Zhou, Y., Zhang, Y., Liu, S.: Electron-beam-driven enhanced terahertz coherent smith–purcell radiation within a cylindrical quasi-optical cavity. IEEE Trans. Terahertz Sci. Technol. 6(2), 262–267 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Quantum Photonics Research Lab (QPRL), Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran
  2. 2.Photonics and Nano-Crystals Research Lab (PNRL), Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations