Advertisement

Dispersion flattened extremely high-birefringent kagome lattice elliptic core photonic crystal fiber in THz regime

  • Md. Shariful IslamEmail author
  • Mohammad Faisal
  • S. M. Abdur Razzak
Article
  • 40 Downloads

Abstract

A highly birefringent elliptic porous-core photonic crystal fiber with kagome lattice cladding has been presented for terahertz (THz) wave transmission. The slotted airholes inside the elliptic core effectively disrupt the symmetry of the porous-core which offers extremely high modal birefringence whereas the kagome cladding structure results in significantly low effective material loss (EML). The birefringence of the proposed structure is \(9.73\times 10^{-2}\) and the EML is \(0.056\,{\hbox {cm}}^{-1}\) for y-polarized mode at an operating frequency of 1 THz. The suggested structure also provides very flat dispersion over a bandwidth of 300 GHz. It is highly expected that this elliptic core waveguide would be remarkably useful in numerous polarization maintaining THz applications.

Keywords

Microstructured fibers Fibres, polarization-maintaining Photonic crystal fibers Optical communications Fiber design and fabrication 

References

  1. Ademgil, H., Haxha, S., Gorman, T., AbdelMalek, F.: Bending effects on highly birefringent photonic crystal fibers with low chromatic dispersion and low confinement losses. J. Lightwave Technol. 27(5), 559–567 (2009)ADSCrossRefGoogle Scholar
  2. Argyros, A., Pla, J.: Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared. Opt. Express 15(12), 7713–7719 (2007)ADSCrossRefGoogle Scholar
  3. Atakaramians, S., Afshar, S., Fischer, B.M., Abbott, D., Monro, T.M.: Low loss, low dispersion and highly birefringent terahertz porous fibers. Opt. Commun. 282(1), 36–38 (2009a)ADSCrossRefGoogle Scholar
  4. Atakaramians, S., Afshar, S., Ebendorff-Heidepriem, V.H., Nagel, M., Fischer, B., Abbott, D., Monro, T.: THz porous fibers: design, fabrication and experimental characterization. Opt. Express 17(16), 14053–14062 (2009b)ADSCrossRefGoogle Scholar
  5. Atakaramians, S., Afshar, S., Monro, V.T., Abbott, D.: Terahertz dielectric waveguides. Adv. Opt. Photonics 5(2), 169–215 (2013)ADSCrossRefGoogle Scholar
  6. Bao, H., Nielsen, K., Rasmussen, H., Jepsen, P., Bang, O.: Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 20(18), 29507–29517 (2012)ADSCrossRefGoogle Scholar
  7. Bhattacharya, R., Konar, S.: Extremely large birefringence and shifting of zero dispersion wavelength of photonic crystal fibers. Opt. Laser Technol. 44(7), 2210–2216 (2012)ADSCrossRefGoogle Scholar
  8. Bise, R.T., Trevor, D.J.: Sol–gel derived microstructured fiber: fabrication and characterization. Opt. Fiber Commun. Conf. (OFC) 3, 1–3 (2005)Google Scholar
  9. Cai, W., Liu, E., Feng, B., Xiao, W., Liu, H., Wang, Z., Wang, S., Liang, T., Liu, J., Liu, J.: Dodecagonal photonic quasi-crystal fiber with high birefringence. JOSA A 33(10), 2108–2114 (2016)ADSCrossRefGoogle Scholar
  10. Cao, Y., Li, R.-M., Tong, Z.-R.: Highly birefringent photonic crystal fibers with flattened dispersion and low confinement loss. Optoelectron. Lett. 9(1), 45–48 (2013)ADSCrossRefGoogle Scholar
  11. Chen, D., Chen, H.: Highly birefringent low-loss terahertz waveguide: elliptical polymer tube. J. Electromagn. Waves Appl. 24(11–12), 1553–1562 (2010)CrossRefGoogle Scholar
  12. Chen, D., Shen, L.: Highly birefringent elliptical-hole photonic crystal fibers with double defect. J. Lightwave Technol. 25(9), 2700–2705 (2007)ADSCrossRefGoogle Scholar
  13. Chen, D., Tam, H.: Highly birefringent terahertz fibers based on super-cell structure. J. Lightwave Technol. 28(12), 1858–1863 (2010)ADSCrossRefGoogle Scholar
  14. Chen, H., Chen, D., Hong, Z.: Squeezed lattice elliptical-hole terahertz fiber with high birefringence. Appl. Opt. 48(20), 3943–3947 (2009)ADSCrossRefGoogle Scholar
  15. Chen, N.-N., Liang, J., Ren, L.-Y.: High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance. Appl. Opt. 52(21), 5297–5302 (2013)ADSCrossRefGoogle Scholar
  16. Dupuis, A., Allard, J.F., Morris, D., Stoeffler, K., Dubois, C., Skorobogatiy, M.: Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method. Opt. Express 17(10), 8012–8028 (2009)ADSCrossRefGoogle Scholar
  17. Ebendorff-Heidepriem, H., Monro, T.M.: Extrusion of complex preforms for microstructured optical fibers. Opt. Express 15(23), 15086–15092 (2007)ADSCrossRefGoogle Scholar
  18. Euser, T., Schmidt, M., Joly, N., Gabriel, C., Marquardt, C., Zang, L., Fortsch, M., Banzer, P., Brenn, A., Elser, D., et al.: Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber. JOSA B 28(1), 193–198 (2011)ADSCrossRefGoogle Scholar
  19. Faisal, M., Islam, M.S.: Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes. Appl. Opt. 57(13), 3340–3347 (2018)ADSCrossRefGoogle Scholar
  20. Habib, M.S., Habib, M.S., Razzak, S.A., Hossain, M.A.: Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19(5), 461–467 (2013)ADSCrossRefGoogle Scholar
  21. Hansen, T.P., Broeng, J., Libori, S.E., Knudsen, E., Bjarklev, A., Jensen, J.R., Simonsen, H.: Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technol. Lett. 13(6), 588–590 (2001)ADSCrossRefGoogle Scholar
  22. Hasan, M.R., Anower, M.S., Islam, M.A., Razzak, S.: Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. Appl. Opt. 55(15), 4145–4152 (2016a)ADSCrossRefGoogle Scholar
  23. Hasan, M.R., Anower, M.S., Hasan, M.I., Razzak, S.: Polarization maintaining low-loss slotted core kagome lattice THz fiber. IEEE Photonics Technol. Lett. 28(16), 1751–1754 (2016b)ADSCrossRefGoogle Scholar
  24. Hasan, M.R., Islam, M.A., Rifat, A.A., Hasan, M.I.: A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64(3), 218–225 (2017a)ADSCrossRefGoogle Scholar
  25. Hasan, M.R., Akter, S., Khatun, T., Rifat, A.A., Anower, M.S.: Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56(4), 043108 (2017b)ADSCrossRefGoogle Scholar
  26. Hasanuzzaman, G., Rana, S., Habib, M.S.: A novel low loss, highly birefringent photonic crystal fiber in THz regime. IEEE Photonics Technol. Lett. 28(8), 899–902 (2016)ADSCrossRefGoogle Scholar
  27. Islam, R., Habib, M.S., Hasanuzzaman, G., Ahmad, R., Rana, S., Kaijage, S.F.: Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime. IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015)ADSCrossRefGoogle Scholar
  28. Kiang, K., Frampton, K., Monro, T., Moore, R., Tucknott, J., Hewak, D., Richardson, D., Rutt, H.: Extruded singlemode non-silica glass holey optical fibres. Electron. Lett. 38(12), 546–547 (2002)CrossRefGoogle Scholar
  29. Kim, S.E., Kim, B.H., Lee, C.G., Lee, S., Oh, K., Kee, C.-S.: Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. Opt. Express 20(2), 1385–1391 (2012)ADSCrossRefGoogle Scholar
  30. Kumar, A., Rastogi, V., Agrawal, A., Rahman, B.: Birefringence analysis of segmented cladding fiber. Appl. Opt. 51(15), 3104–3108 (2012)ADSCrossRefGoogle Scholar
  31. Li, H., Ren, G., Atakaramians, S., Kuhlmey, B.T., Jian, S.: Linearly polarized single TM mode terahertz waveguide. Opt. Lett. 41(17), 4004–4007 (2016)ADSCrossRefGoogle Scholar
  32. Liu, Q., Li, S.-G., Fan, Z., Zhang, W., Zi, J., Li, H.: Numerical analysis of high extinction ratio photonic crystal fiber polarization splitter based on ZnTe glass. Opt. Fiber Technol. 21, 193–197 (2015a)ADSCrossRefGoogle Scholar
  33. Liu, Q., Li, S., Chen, H.: Two kinds of polarization filter based on photonic crystal fiber with nanoscale gold film. IEEE Photonics J. 7(1), 1–11 (2015b)CrossRefGoogle Scholar
  34. Nielsen, K., Rasmussen, H.K., Adam, A.J., Planken, P.C., Bang, O., Jepsen, P.U.: Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2009)ADSCrossRefGoogle Scholar
  35. Ortigosa-Blanch, A., Knight, J., Wadsworth, W., Arriaga, J., Mangan, B., Birks, T., Russell, P.S.J.: Highly birefringent photonic crystal fibers. Opt. Lett. 25(18), 1325–1327 (2000)ADSCrossRefGoogle Scholar
  36. Ritari, T., Ludvigsen, H., Wegmuller, M., Legre, M., Gisin, N., Folkenberg, J., Nielsen, M.: Experimental study of polarization properties of highly birefringent photonic crystal fibers. Opt. Express 12(24), 5931–5939 (2004)ADSCrossRefGoogle Scholar
  37. Sharma, M., Borogohain, N., Konar, S.: Index guiding photonic crystal fibers with large birefringence and walk-off. J. Lightwave Technol. 31(21), 3339–3344 (2013)ADSCrossRefGoogle Scholar
  38. Shi, F., Wu, Y., Li, M., Zhao, Y., Zhao, L.: Highly birefringent two-mode photonic crystal fibers with near-zero flattened dispersion. IEEE Photonics J. 3(6), 1181–1188 (2011)ADSCrossRefGoogle Scholar
  39. Tang, X., Yu, Z., Tu, X., Chen, J., Argyros, A., Kuhlmey, B.T., Shi, Y.: Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer. Opt. Express 23(17), 22587–22601 (2015)ADSCrossRefGoogle Scholar
  40. Wang, L., Yang, D.: Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core. Opt. Express 15(14), 8892–8897 (2007)ADSCrossRefGoogle Scholar
  41. Wang, J., Chen, H., Shi, W.: A high birefringent polymer terahertz waveguide: suspended elliptical core fiber. J. Opt. Soci. Korea 18(5), 453–458 (2014)CrossRefGoogle Scholar
  42. Yang, J., Zhao, J., Gong, C., Tian, H., Sun, L., Chen, P., Lin, L., Liu, W.: 3D printed low-loss THz waveguide based on kagome photonic crystal structure. Opt. Express 24(20), 22454–22460 (2016)ADSCrossRefGoogle Scholar
  43. Zhu, Y.-F., Chen, M.-Y., Wang, H., Yao, H.-B., Zhang, Y.-K., Yang, J.-C.: Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter. IEEE Photonics J. 5(6), 7101410–7101410 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  3. 3.Department of Electrical and Electronic EngineeringRajshahi University of Engineering and TechnologyRajshahiBangladesh

Personalised recommendations