Advertisement

M-derivative applied to the soliton solutions for the Lakshmanan–Porsezian–Daniel equation with dual-dispersion for optical fibers

  • H. Yépez-Martínez
  • J. F. Gómez-AguilarEmail author
Article
  • 21 Downloads

Abstract

Optical dispersive soliton solutions for the fractional Lakshmanan–Porsezian–Daniel equation for optical fibers are studied in this paper considering the M-derivative of order \(\chi\). The analytical method considered here is based on the Jacobi elliptic function (JEF) anzätz method. We found new optical soliton solutions that are relevant for the dynamics inside optical fibers. Some constraints conditions arise between the parameters of the JEF soliton solutions. Typical behaviour of the soliton solutions obtained is depicted in some interesting simulations.

Keywords

Fractional Lakshmanan–Porsezian–Daniel equation M-derivative Jacobi elliptic function (JEF)anzätz Analytical solutions 

Notes

Acknowledgements

We gratefully acknowledge to the Universidad Autónoma de la Ciudad de México for supporting and facilitating this research work. José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014. Huitzilín Yépez Martínez and José Francisco Gómez Aguilar acknowledges the support provided by SNI-CONACyT.

Compliance with ethical standards

Conflict of interest

The author declare no conflict of interest.

References

  1. Arshed, S., Biswas, A., Majid, F.B., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model using \(\exp (-\varphi (\xi ))-\)expansion method. Optik 170, 555–560 (2018)ADSCrossRefGoogle Scholar
  2. Aslan, E.C., Tchier, F., Inc, M.: On optical solitons of the Schrödinger–Hirota equation with power law nonlinearity in optical fibers. Superlattices Microstruct. 105, 1–11 (2017)CrossRefGoogle Scholar
  3. Aslan, E.C., Tchier, F., Inc, M.: On optical solitons of the Schrödinger–Hirota equation with power law nonlinearity in optical fibers. Superlattices Microstruct. 105, 48–55 (2017)ADSCrossRefGoogle Scholar
  4. Bansal, A., Biswas, A., Triki, H., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons and group invariant solutions to Lakshmanan–Porsezian-Daniel model in optical fibers and PCF. Optik 160, 86–91 (2018)ADSCrossRefGoogle Scholar
  5. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Manrakhan, W.N.: Dispersive optical solitons with Schrödinger–Hirota equation. J. Nonlinear Opt. Phys. Mater. 23, 14–21 (2014)CrossRefGoogle Scholar
  6. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Manrakhan, W.N., Savescu, M., Biswas, A.: Dispersive optical solitons with Schrödinger–Hirota equation. J. Nonlinear Opt. Phys. Mater. 23, 1–21 (2014)CrossRefGoogle Scholar
  7. Biswas, A.: Optical solitons: quasistationarity versus Lie transform. Opt. Quantum Electron. 35(10), 979–998 (2003)CrossRefGoogle Scholar
  8. Biswas, A.: Stochastic perturbation of optical solitons in Schrödinger–Hirota equation. Opt. Commun. 239(4–6), 457–462 (2004)ADSGoogle Scholar
  9. Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58(1–2), 345–348 (2009)MathSciNetCrossRefGoogle Scholar
  10. Biswas, A.: Solitary waves for power-law regularized long-wave equation and R(m, n) equation. Nonlinear Dyn. 59(3), 423–426 (2010)MathSciNetCrossRefGoogle Scholar
  11. Biswas, A., Konar, S.: Introduction to Non–Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  12. Biswas, A., Jawad, A.J.M., Manrakhan, W.N., Sarma, A.K., Khan, K.R.: Optical solitons and complexitons of the Schrödinger–Hirota equation. Opt. Laser Technol. 44(7), 2265–2269 (2012)ADSCrossRefGoogle Scholar
  13. Biswas, A., Khan, K., Rahman, A., Yildirim, A., Hayat, T., Aldossary, O.M.: Bright and dark solitons in birefringent fibers with Hamiltonian perturbations and Kerr law nonlinearity. J. Optoelectron. Adv. Mater. 14(7–8), 571–576 (2012)Google Scholar
  14. Biswas, A., Ekici, M., Sonmezoglu, A., Zhou, Q., Alshomrani, A.S., Moshokoa, S.P., Belic, M.: Optical network topology with DWDM technology for log law medium. Optik 160, 353–360 (2018a)ADSCrossRefGoogle Scholar
  15. Biswas, A., Yildirim, Y., Yasar, E., Alqahtani, R.T.: Optical solitons for Lakshmanan–Porsezian–Daniel model with dual-dispersion by trial equation method. Optik 168, 432–439 (2018b)ADSCrossRefGoogle Scholar
  16. Biswas, A., Ekic, M., Sonmezoglu, A., Triki, H., Majid, F.B., Zhou, Q., Moshokoa, S.P., Mirzazadeh, M., Belic, M.: Optical solitons with Lakshmanan–Porsezian–Daniel model using a couple of integration schemes. Optik 158, 705–711 (2018c)ADSCrossRefGoogle Scholar
  17. Biswas, A., Yildirim, Y., Yasar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Optik 160, 24–32 (2018d)ADSCrossRefGoogle Scholar
  18. Dowluru, R.K., Bhima, P.R.: Influences of third order dispersion on linear birefringent optical soliton transmission systems. J. Opt. 40(3), 132–142 (2011)CrossRefGoogle Scholar
  19. Feng, D., Jiao, J., Jiang, G.: Optical solitons and periodic solutions of the (2+1)-dimensional Schrödinger’s equation. Phys. Lett. A 382(32), 2081–2084 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)CrossRefGoogle Scholar
  21. Green, P., Biswas, A.: Bright and dark optical solitons with time-dependent coefficients in a non-Kerr law media. Commun. Nonlinear Sci. Numer. Simul. 15(12), 3865–3873 (2010)ADSMathSciNetCrossRefGoogle Scholar
  22. Hubert, M.B., Betchewe, G., Justin, M., Doka, S.Y., Crepin, K.T., Biswas, A., Zhou, Q., Alshomrani, S., Ekici, M., Moshokoa, S.P., Belic, M.: Optical solitons with Lakshmanan–Porsezian–Daniel model by modified extended direct algebraic method. Optik 162, 228–236 (2018)ADSCrossRefGoogle Scholar
  23. Jubgang Jr., D.F., Moise, D.A., Sunda-Meya, A.: Elliptic solitons in optical fiber media. Phys. Rev. A 92(5), 1–10 (2015)Google Scholar
  24. Liu, W., Qiu, D.-Q., Wu, Z.-W., He, J.-S.: Dynamical behavior of solution in integrable nonlocal Lakshmanan–Porsezian–Daniel equation. Commun. Theor. Phys. 65, 671–676 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. Mainardi, F., Gorenflo, R.: On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118(1–2), 283–299 (2000)ADSMathSciNetCrossRefGoogle Scholar
  26. Manafian, J., Foroutan, M., Guzali, A.: Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model. Eur. Phys. J. Plus 132, 1–14 (2017)CrossRefGoogle Scholar
  27. Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81(1–2), 277–282 (2015)CrossRefGoogle Scholar
  28. Sassaman, R., Biswas, A.: Topological and nontopological solitons of the Klein–Gordon equations in \(1+2\) dimensions. Nonlinear Dyn. 61(1–2), 23–28 (2010)CrossRefGoogle Scholar
  29. Sousa, J.V.D.C., de Oliveira, E.C.: A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16(1), 83–96 (2018)zbMATHGoogle Scholar
  30. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972)ADSMathSciNetGoogle Scholar
  31. Zhang, Zai-Yun, Liu, Zhen-Hai, Miao, Xiu-Jin, Chen, Yue-Zhong: New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Appl. Math. Comput. 216, 3064–3072 (2010)MathSciNetzbMATHGoogle Scholar
  32. Zhang, Z.Y., Liu, Z.H., Miao, X.J., Chen, Y.Z.: New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Appl. Math. Comput. 216, 3064–3072 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidad Autónoma de la Ciudad de MéxicoMexicoMexico
  2. 2.CONACyT-Tecnológico Nacional de México/CENIDETCuernavacaMexico

Personalised recommendations