Advertisement

Polarization-based plug-and-play measurement-device-independent quantum key distribution

  • Min Hu
  • Litao Zhang
  • Banghong GuoEmail author
  • Jun Li
Article
  • 42 Downloads

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) has received much attention, with the goal of overcoming all of the security loopholes caused by an imperfect detection system. We here propose a plug-and-play MDI-QKD (P&P MDI-QKD) scheme whereby an untrusted relay node, Charlie, owns a laser and sends photons to Alice and Bob. Alice (Bob) modulates the polarization of the incident photons and returns them to Charlie. Charlie uses a modified Bell state analyzer (BSA) to perform Bell state measurements (BSM). In comparison with the original version of MDI-QKD, our scheme exploits a single untrusted laser as the photon source. This makes the signal photons identical and enhances the Hong-Ou-Mandel effect. Second, because of the P&P structure, the setup can automatically eliminate the birefringence influence of the fibers, which makes the setup highly stable. Finally, our modified BSA can identify \({{\left| \varPhi \right\rangle }^{+}}\) and \({{\left| \varPhi \right\rangle }^{-}}\) of four Bell states with polarization encoding but not \({{\left| \varPsi \right\rangle }^{+}}\) and \({{\left| \varPsi \right\rangle }^{-}}\). Based on practical experimental parameters, a simulation showed that the maximum theoretical secure transmission distance could reach more 280 km.

Keywords

Quantum cryptography Quantum key distribution Measurement-device-independent Plug-and-play 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 61572203); the Open Research Fund (Grant No. KQI201508) of the Key Lab of Quantum Information, Chinese Academy of Sciences; the Open Research Fund (Grant No. SKLST201602) of the State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences; and Guangdong Innovative Research Team Program (Grant No. 201001D0104799318).

References

  1. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007).  https://doi.org/10.1103/PhysRevLett.98.230501, 0702152
  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992).  https://doi.org/10.1103/PhysRevLett.68.3121. arXiv:1011.1669v3
  3. Bennett, C.H., Brassard, G.: Quantum cryprography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Institute of Electrical and Electronics Engineers, Bangalore, India, pp. 175–179 (1984)Google Scholar
  4. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330–1333 (2000).  https://doi.org/10.1103/PhysRevLett.85.1330, 9911054
  5. Chen, D., Zhao, S.H., Shi, L., Liu, Y.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93(3), 032320 (2016).  https://doi.org/10.1103/PhysRevA.93.032320 ADSCrossRefGoogle Scholar
  6. Cheng, G., Guo, B., Zhang, C., Guo, J., Fan, R.: Wavelength division multiplexing quantum key distribution network using a modified plug-and-play system. Opt. Quantum Electron. 47(7), 1809–1817 (2015).  https://doi.org/10.1007/s11082-014-0039-4 CrossRefGoogle Scholar
  7. Feihu, X., Curty, M., Qi, B., Lo, H.-K.: Measurement-device-independent quantum cryptography. IEEE J. Sel. Top. Quantum Electron. 21(3), 148–158 (2015).  https://doi.org/10.1109/JSTQE.2014.2381460. URL http://ieeexplore.ieee.org/document/6985598/, 1409.5157
  8. Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015).  https://doi.org/10.1103/PhysRevLett.114.090501, 1412.0832
  9. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 022320 (2006).  https://doi.org/10.1103/PhysRevA.73.022320, 0507063
  10. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004).  https://doi.org/10.1063/1.1738173, 0412171
  11. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(5), 325–360 (2004)MathSciNetzbMATHGoogle Scholar
  12. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987).  https://doi.org/10.1103/PhysRevLett.59.2044 ADSCrossRefGoogle Scholar
  13. Inamori, H.: Security of practical time-reversed EPR quantum key distribution. Algorithmica 34(4), 340–365 (2002).  https://doi.org/10.1007/s00453-002-0983-4 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89(3), 037902 (2002).  https://doi.org/10.1103/PhysRevLett.89.037902 ADSCrossRefGoogle Scholar
  15. Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L., Ma, X., Pelc, J.S., Fejer, M.M., Peng, C.Z., Zhang, Q., Pan, J.W.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2013).  https://doi.org/10.1103/PhysRevLett.111.130502, 1209.6178
  16. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005).  https://doi.org/10.1103/PhysRevLett.94.230504, 0411004
  17. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012).  https://doi.org/10.1103/PhysRevLett.108.130503. arXiv:1109.1473v1
  18. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018).  https://doi.org/10.1038/s41586-018-0066-6 ADSCrossRefGoogle Scholar
  19. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304 (2000).  https://doi.org/10.1103/PhysRevA.61.052304, 9910093
  20. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010).  https://doi.org/10.1038/nphoton.2010.214, 1008.4593
  21. Ma, X., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86(5), 052305 (2012).  https://doi.org/10.1103/PhysRevA.86.052305. arXiv:1210.3929v1
  22. Marsili, F., Verma, V.B., Stern, J.A., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., Nam, S.W.: Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7(3), 210–214 (2013).  https://doi.org/10.1038/nphoton.2013.13, 1209.5774
  23. Muller, A., Herzog, T., Huttner, B., Tittel, W., Zbinden, H., Gisin, N.: “Plug and play” systems for quantum cryptography. Appl. Phys. Lett. 70(7), 793–795 (1997).  https://doi.org/10.1063/1.118224, 9611042
  24. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7(1), 073–082 (2007). arXiv:quant-ph/0512080, 0512080
  25. Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111(13), 130501 (2013).  https://doi.org/10.1103/PhysRevLett.111.130501. arXiv:1204.0738v4
  26. Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004).  https://doi.org/10.1103/PhysRevLett.92.057901, 0211131
  27. Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 4, 41 (2002).  https://doi.org/10.1088/1367-2630/4/1/341. arXiv:quant-ph/0203118, 0203118
  28. Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013).  https://doi.org/10.1103/PhysRevA.87.052329. 1305.7396ADSCrossRefGoogle Scholar
  29. Tang, G.Z., Sun, S.H., Xu, F., Chen, H., Li, C.Y., Liang, L.M.: Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 94(3), 032326 (2016).  https://doi.org/10.1103/PhysRevA.94.032326. 1609.02648ADSCrossRefGoogle Scholar
  30. Tang, Y.L., Yin, H.L., Chen, S.J., Liu, Y., Zhang, W.J., Jiang, X., Zhang, L., Wang, J., You, L.X., Guan, J.Y., Yang, D.X., Wang, Z., Liang, H., Zhang, Z., Zhou, N., Ma, X., Chen, T.Y., Zhang, Q., Pan, J.W.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113(19), 190501 (2014a).  https://doi.org/10.1103/PhysRevLett.113.190501. 1407.8012ADSCrossRefGoogle Scholar
  31. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503 (2014b).  https://doi.org/10.1103/PhysRevLett.112.190503. 1306.6134ADSCrossRefGoogle Scholar
  32. Wai, P., Menyak, C.: Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence. J. Lightwave Technol. 14(2), 148–157 (1996).  https://doi.org/10.1109/50.482256 ADSCrossRefGoogle Scholar
  33. Wu, C.F., Du, Y.N., Wang, J.D., Wei, Z.J., Qin, X.J., Zhao, F., Zhang, Z.M.: Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica 65(10), 100302 (2016a).  https://doi.org/10.7498/aps.65.100302 CrossRefGoogle Scholar
  34. Wu, Y., Zhou, J., Gong, X., Guo, Y., Zhang, Z.M., He, G.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93(2), 022325 (2016b).  https://doi.org/10.1103/PhysRevA.93.022325. 1512.03876ADSCrossRefGoogle Scholar
  35. Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010).  https://doi.org/10.1088/1367-2630/12/11/113026. 1005.2376ADSCrossRefGoogle Scholar
  36. Zhang, C.X., Guo, B.H., Cheng, G.M., Guo, J.J., Fan, R.H.: Spin-orbit hybrid entanglement quantum key distribution scheme. Sci. China Phys. Mech. Astron. 57(11), 2043–2048 (2014).  https://doi.org/10.1007/s11433-014-5557-3 ADSCrossRefGoogle Scholar
  37. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008).  https://doi.org/10.1103/PhysRevA.78.042333. 0704.3253ADSCrossRefGoogle Scholar
  38. Zhu, C., Xu, F., Pei, C.: W-state analyzer and multi-party measurement-device-independent quantum key distribution. Sci. Rep. 5(1), 17449 (2015).  https://doi.org/10.1038/srep17449 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangzhouChina
  2. 2.College of Computer Science and Software EngineeringShenzhen UniversityShenzhenChina
  3. 3.State Key Laboratory of Transient Optics and PhotonicsChinese Academy of SciencesXi’anChina
  4. 4.Key Laboratory of Quantum InformationUniversity of Science and Technology of China, Chinese Academy of SciencesHefeiChina
  5. 5.South China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhouChina

Personalised recommendations