Advertisement

Role of structural anisotropy in geometric birefringence of high-birefringence index-guiding PCFs: analysis by moment of inertia

  • Sheng LiangEmail author
  • Yongxin Zhang
  • Xingyu Zhang
  • Xinzhi Sheng
  • Shuqin Lou
  • Xin Wang
  • Bo Lin
  • Mingli Dong
  • Lianqing Zhu
  • Jueting Luo
  • Rui Peng
  • Liuyan Liang
  • Yuqin Lin
  • Jinli Wang
  • Yue Yang
  • Shuai Kang
  • Yuelang Huang
  • Jiazheng Ding
  • Wenxuan Xu
  • Fuxiao Li
Article
  • 30 Downloads

Abstract

We have studied the role of structural anisotropy on the geometric birefringence of four typical high-birefringence (HB) index-guiding photonic crystal fibers (PCFs) with the same air-silica structure and circular, ellipse, and rectangle air holes, respectively. The normalized difference between the moment of inertia ΔI in x and y direction of the PCF structure is utilized to quantificationally describe the structural anisotropy. We demonstrate that the phase birefringence B increases monotonously when the normalized ΔI rises in different cases of PCFs structures. In order to obtain high birefringence B, it can be an effective method to optimize the parameters of the structure to increase the normalized ΔI. This work can be not only a reference of founding the essence of geometric birefringence and proposing the optimal design of HB-IG-PCFs, but also an enlightenment for bringing the different method (compared to the finite element) into the investigation of PCFs.

Keywords

Photonic crystal fiber (PCF) Birefringence Polarization maintenance Structural anisotropy Geometric birefringence Moment of inertia 

Notes

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (2018JBM070), the National Natural Science Foundation of China (Nos. 61675019, 61527822, and 61735005), the National Natural Science Foundation of Beijing (No. 4182054), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_16R07), and the National Key R&D Program of China (2016YFC0800500).

References

  1. Brosi, J.M., Koos, C., Andreani, L.C., Waldow, M., Leuthold, J., Freude, W.: High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16(6), 4177–4191 (2008)CrossRefADSGoogle Scholar
  2. Chen, D., Shen, L.: Highly birefringent elliptical-hole photonic crystal fibers with double defect. J. Lightwave Technol. 25(9), 2700–2705 (2007)CrossRefADSGoogle Scholar
  3. Chen, X., Li, M.J., Venkataraman, N., Gallagher, M.T., Wood, W.A., Crowley, A.M., Carberry, J.P., Zenteno, L.A., Koch, K.W.: Highly birefringent hollow-core photonic bandgap fiber. Opt. Express 12(16), 3888–3893 (2004)CrossRefADSGoogle Scholar
  4. Gangwar, R.K., Singh, V.K.: Study of highly birefringence dispersion shifted photonic crystal fiber with asymmetrical cladding. Optik 127(24), 11854–11859 (2016)CrossRefADSGoogle Scholar
  5. Habib, M.S., Khandker, E.: Highly birefringent photonic crystal fiber with ultra-flattened negative dispersion over S + C + L + U bands. Appl. Opt. 54(10), 2786–2789 (2015)CrossRefADSGoogle Scholar
  6. Habib, M.S., Habib, M.S., Hasan, M.I., Razzak, S.M.A.: Highly nonlinear polarization maintaining two zero dispersion spiral photonic crystal fiber using artificial defects. Opt. Fiber Technol. 19(6), 539–542 (2013)CrossRefADSGoogle Scholar
  7. Habib, M.S., Ahmad, R., Habib, M.S., Razzak, S.M.A.: Maintaining single polarization and dispersion compensation with modified rectangular microstructure optical fiber. Optik 125, 4030–4034 (2014a)CrossRefADSGoogle Scholar
  8. Habib, M.S., Habib, M.S., Hasan, M.I., Razzak, S.M.A., Hossain, M.A., Namihira, Y.: Polarization maintaining large nonlinear coefficient photonic crystal fibers using rotational hybrid cladding. Optik 125(3), 1011–1015 (2014b)CrossRefADSGoogle Scholar
  9. Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, 9th edn. Wiley, New York (2013). ISBN 978-0-470-46908-8zbMATHGoogle Scholar
  10. Hasan, M.I., Habib, M.S., Habib, M.S., Razzak, S.M.A.: Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20(1), 32–38 (2014)CrossRefADSGoogle Scholar
  11. Hu, D.J.J., Shum, P.P., Lu, C., Ren, G.: Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications. Opt. Commun. 282(20), 4072–4076 (2009)CrossRefADSGoogle Scholar
  12. Huang, T., Liao, J., Fu, S., Tang, M., Shum, P., Liu, D.: Slot spiral silicon photonic crystal fiber with property of both high birefringence and high nonlinearity. IEEE Photonics J. 6(3), 1–7 (2014)Google Scholar
  13. Jiang, G., Fu, Y., Huang, Y.: High birefringence rectangular-hole photonic crystal fiber. Opt. Fiber Technol. 26, 163–171 (2015)CrossRefADSGoogle Scholar
  14. Knight, J.C.: Photonic crystal fibres. Nature 424, 847–851 (2003)CrossRefADSGoogle Scholar
  15. Li, P., Zhao, J.: Polarization-dependent coupling in gold-filled dual core photonic crystal fibers. Opt. Express 21(5), 5232–5238 (2013)CrossRefADSGoogle Scholar
  16. Liu, Y.C., Lai, Y.: Optical birefringence and polarization dependent loss of square- and rectangular-lattice holey fibers with elliptical air holes: numerical analysis. Opt. Express 13(1), 225–235 (2005)MathSciNetCrossRefADSGoogle Scholar
  17. Mousavi, S.A., Sandoghchi, S.R., Richardson, D.J., Poletti, F.: Broadband high birefringence and polarizing hollow core antiresonant fibers. Opt. Express 24(20), 22943–22958 (2016)CrossRefADSGoogle Scholar
  18. Saitoh, K., Koshiba, M.: Single-polarization single-mode photonic crystal fibers. IEEE Photonic Technol. Lett. 15(10), 1384–1386 (2003)CrossRefADSGoogle Scholar
  19. Samiul Habib, M., Nasim, K.M., Selim Habib, M., Hasan, M.I., Ahmad, R.: Relative dispersion slope matched dispersion compensating highly birefringent spiral microstructure optical fibers using defected core. Opt. Eng. 52(9), 096110 (2013) CrossRefADSGoogle Scholar
  20. Song, P., Zhang, L., Wang, Z., Hu, Q., Zhao, S., Jiang, S., Liu, S.: Birefringence characteristics of squeezed lattice photonic crystal fibers. J. Lightwave Technol. 25(7), 1771–1776 (2007)CrossRefADSGoogle Scholar
  21. Sun, Y.S., Chau, Y.F., Yeh, H.H., Shen, L.F., Yang, T.J., Tsai, D.P.: High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding. Appl. Opt. 46(22), 5276–5281 (2007)CrossRefADSGoogle Scholar
  22. Szpulak, M., Statkiewicz, G., Olszewski, J., Martynkien, T., Urbanczyk, W., Wojcik, J., Makara, M., Klimek, J., Nasilowski, T., Berghmans, F., Thienpont, H.: Experimental and theoretical investigations of birefringent holey fibers with a triple defect. Appl. Opt. 44(13), 2652–2658 (2005)CrossRefADSGoogle Scholar
  23. Wei, S., Yuan, J.H., Yu, C.X., Wu, Q., Farrell, G., Li, S., Jin, B.Y., Hu, X.M.: Design on a highly birefringent and highly nonlinear tellurite ellipse core photonic crystal fiber with two zero dispersion wavelengths. Opt. Fiber Technol. 20(4), 320–324 (2014)CrossRefADSGoogle Scholar
  24. Xu, Q., Almeida, V.R., Panepucci, R.R., Lipson, M.: Experimental demonstration of guiding and confining light in nanometer-size low refractive-index material. Opt. Lett. 29(14), 1626–1628 (2004)CrossRefADSGoogle Scholar
  25. Yang, T., Wang, E., Jiang, H., Hu, Z., Xie, K.: High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Express 23(7), 8329–8337 (2015)CrossRefADSGoogle Scholar
  26. Yue, Y., Kai, G., Wang, Z., Sun, T., Jin, L., Lu, Y., Zhang, C., Liu, J., Li, Y., Liu, Y., Yuan, S., Dong, X.: Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Opt. Lett. 32(5), 469–471 (2007)CrossRefADSGoogle Scholar
  27. Zhang, L., Yang, C.: Photonic crystal fibers with squeezed hexagonal lattice. Opt. Express 12(11), 2371–2376 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sheng Liang
    • 1
    Email author
  • Yongxin Zhang
    • 1
  • Xingyu Zhang
    • 1
  • Xinzhi Sheng
    • 1
  • Shuqin Lou
    • 2
  • Xin Wang
    • 2
  • Bo Lin
    • 3
  • Mingli Dong
    • 4
  • Lianqing Zhu
    • 4
  • Jueting Luo
    • 1
  • Rui Peng
    • 1
  • Liuyan Liang
    • 1
  • Yuqin Lin
    • 1
  • Jinli Wang
    • 1
  • Yue Yang
    • 1
  • Shuai Kang
    • 1
  • Yuelang Huang
    • 1
  • Jiazheng Ding
    • 1
  • Wenxuan Xu
    • 1
  • Fuxiao Li
    • 1
  1. 1.Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of ScienceBeijing Jiaotong UniversityBeijingChina
  2. 2.School of Electronic and Information EngineeringBeijing Jiaotong UniversityBeijingChina
  3. 3.China Academy of Electronics and Information TechnologyBeijingChina
  4. 4.Beijing Engineering Research Center of Optoelectronic Information and Instruments, Beijing Key Laboratory for Optoelectronics Measurement TechnologyBeijing Information Science and Technology UniversityBeijingChina

Personalised recommendations