Advertisement

Flattened and broadband mid-infrared super-continuum generation in As2Se3 based holey fiber

  • Erlei Wang
  • Jia Li
  • Jin Li
  • Quan Cheng
  • Xiaodong Zhou
  • Haiming Jiang
Article
  • 29 Downloads

Abstract

By using an As2Se3 based holey fiber (HF) with a normal flat dispersion profiles, a flattened and broadband mid-infrared super-continuum generation is analysed. The transmission of an ultra-short pulse in the HF is numerically simulated by solving the generalized nonlinear Schrödinger equation under various parameters. The simulation results show that, by launching a pulse with a width of 50 fs and a peak power of 4.25 kW at 4375 nm into the 6 mm-long HF, a flat and broadband super-continuum at 3 dB level is successfully generated. The super-continuum covers the wavelengths from 3866 to 5958 nm which is the largest flat bandwidth reported in such a short fiber.

Keywords

Holey fiber Normal flat dispersion Mid-infrared super-continuum 

Notes

Acknowledgements

This work was supported in part by the High Level Research Start-up Fund of ZhouKou Normal University, Henan, China (No. ZKNUC2017033).

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, New York (2006)zbMATHGoogle Scholar
  2. Alfano, R.R.: The Supercontinuum Laser Source: The Ultimate White Light. Springer, Berlin (2016)CrossRefGoogle Scholar
  3. Alfano, R.R., Shapiro, S.L.: Emission in the region 4000–7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24(11), 584–587 (1970)ADSCrossRefGoogle Scholar
  4. Anderson, D., Desaix, M., Lisak, M., Quiroga-Teixeiro, M.L.: Wave breaking in nonlinear-optical fibers. J. Opt. Soc. Am. B 9(8), 1358–1361 (1992)ADSCrossRefGoogle Scholar
  5. Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(13), 961–963 (1997)ADSCrossRefGoogle Scholar
  6. Broderick, N.G.R., Monro, T.M., Bennett, P.J., Richardson, D.J.: Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett. 24(20), 1395–1397 (1999)ADSCrossRefGoogle Scholar
  7. Chen, M.Y., Yu, R.J., Zhao, A.P.: Highly birefringent rectangular lattice photonic crystal fibres. J. Opt. A Pure Appl. Opt. 6(10), 997–1000 (2004)ADSCrossRefGoogle Scholar
  8. Cheng, T., Kawashima, H., Xue, X., Deng, D., Matsumoto, M., Misumi, T., Suzuki, T., Ohishi, Y.: Fabrication of a chalcogenide-tellurite hybrid microstructured optical fiber for flattened and broadband supercontinuum generation. J. Lightwave Technol. 33(2), 333–338 (2015)ADSCrossRefGoogle Scholar
  9. Cook, K., Canning, J., Leon-Saval, S., Reid, Z., Hossain, M.A., Comatti, J.E., Luo, Y., Peng, G.D.: Air-structured optical fiber drawn from a 3D-printed preform. Opt. Lett. 40(17), 3966–3969 (2015)ADSCrossRefGoogle Scholar
  10. Dantanarayana, H.G., Abdel-Moneim, N., Tang, Z., Sojka, L., Sujecki, S., Furniss, D., Seddon, A.B., Kubat, I., Bang, O., Benson, T.M.: Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation. Opt. Mater. Exp. 4(7), 1444–1455 (2014)ADSCrossRefGoogle Scholar
  11. Domachuk, P., Chapman, A., Mägi, E., Steel, M.J., Nguyen, H.C., Eggleton, B.J.: Transverse characterization of high air-fill fraction tapered photonic crystal fiber. Appl. Opt. 44(19), 3885–3892 (2005)ADSCrossRefGoogle Scholar
  12. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)ADSCrossRefGoogle Scholar
  13. Ebnali-Heidari, M., Saghaei, H., Koohi-Kamali, F., NaserMoghadasi, M., Moravvej-Farshi, M.K.: Proposal for supercon-tinuum generation by optofluidic infiltrated photonic crystalfibers. IEEE J. Sel. Top. Quant. Electron. 20(5), 582–589 (2014)ADSCrossRefGoogle Scholar
  14. Goldberg, L., Burns, W.K., McElhanon, R.W.: Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3. Opt. Lett. 20(11), 1280–1282 (1995)ADSCrossRefGoogle Scholar
  15. Guiyao, Z., Zhiyun, H., Shuguang, L., Lantian, H.: Fabrication of glass photonic crystal fibers with a die-cast process. Appl. Opt. 45(18), 4433–4436 (2006)ADSCrossRefGoogle Scholar
  16. Heidt, A.M.: Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J. Opt. Soc. Am. B 27(3), 550–559 (2010)ADSCrossRefGoogle Scholar
  17. Issa, N.A., van Eijkelenborg, M.A., Fellew, M., Cox, F., Henry, G., Large, M.C.: Fabrication and study of microstructured optical fibers with elliptical holes. Opt. Lett. 29(12), 1336–1338 (2004)ADSCrossRefGoogle Scholar
  18. Kim, S., Kee, C.-S.: Dispersion properties of dual-core photonic-quasicrystal fiber. Opt. Exp. 17(18), 15885–15890 (2009)ADSCrossRefGoogle Scholar
  19. Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P.J., de Sandro, J.P.: Large mode area photonic crystal fibre. Electron. Lett. 34(13), 1347–1348 (1998)CrossRefGoogle Scholar
  20. Lenz, G., Zimmermann, J., Katsufuji, T., Lines, M.E., Hwang, H.Y., Spälter, S., Slusher, R.E., Cheong, S.-W.: Large Kerr effect in bulk Se-based chalcogenide glasses. Opt. Lett. 25(4), 254–256 (2000)ADSCrossRefGoogle Scholar
  21. Liao, M., Chaudhari, C., Qin, G., Yan, X., Kito, C., Suzuki, T., Ohishi, Y., Matsumoto, M., Misumi, T.: Fabrication and characterization of a chalcogenide tellurite composite microstructure fiber with high nonlinearity. Opt. Exp. 17(24), 21608–21614 (2009)ADSCrossRefGoogle Scholar
  22. Mortensen, N.A., Folkenberg, J.R., Nielsen, M.D., Hansen, K.P.: Modal cutoff and the v parameter in photonic crystal fibers. Opt. Lett. 28(28), 1879–1981 (2003)ADSCrossRefGoogle Scholar
  23. Popmintchev, T., Chen, M., Popmintchev, D., et al.: Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336(6086), 1287–1291 (2012)ADSMathSciNetCrossRefGoogle Scholar
  24. Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1), 25–27 (2000)ADSCrossRefGoogle Scholar
  25. Reeves, W.H., Knight, J.C., Russell, P.S.J., Roberts, P.J.: Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express 10(14), 609–613 (2002)ADSCrossRefGoogle Scholar
  26. Saghaei, H., Moravvej-Farshi, M.K., Ebnali-Heidari, M., Moghadasi, M.N.: Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF. IEEE J. Sel. Top. Quant. 22(2), 1–8 (2016)CrossRefGoogle Scholar
  27. Saini, T.S., Kumar, A., Sinha, R.K.: Broadband mid-infrared supercontinuum spectra spanning 2–15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber. J. Lightwave Technol. 33(18), 3914–3920 (2015)ADSCrossRefGoogle Scholar
  28. Saitoh, K., Florous, N., Koshiba, M.: Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Opt. Exp. 13(21), 8365–8371 (2005)ADSCrossRefGoogle Scholar
  29. Schliesser, N., Picque, T., Hansch, W.: Mid-infrared frequency combs. Nat. Photon. 6(7), 440–449 (2012)ADSCrossRefGoogle Scholar
  30. Seddon, B.: A prospective for new mid-infrared medical endoscopy using chalcogenide glasses. Int. J. Appl. Glass Sci. 2(3), 177–191 (2011)CrossRefGoogle Scholar
  31. Sharma, M., Konar, S.: Three octave spanning supercontinuum by red-shifted dispersive wave in photonic crystal fibers. J. Mod. Opt. 63(5), 501–510 (2016)ADSCrossRefGoogle Scholar
  32. Shiryaev, V., Churbanov, M.: Trends and prospects for development of chalcogenide fibers for mid-infrared transmission. J. Non-Cryst. Solids 377, 225–230 (2013)ADSCrossRefGoogle Scholar
  33. Suzuki, K., Kubota, H., Kawanishi, S., Tanaka, M., Fujita, M.: Optical properties of a low-loss polarization maintaining photonic crystal fiber. Opt. Express 9(13), 676–680 (2001)ADSCrossRefGoogle Scholar
  34. Wadsworth, W.J., Joly, N., Knight, J.C., Birks, T.A., Biancalana, F., Russell, P.J.: Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. Opt. Exp. 12(2), 299–309 (2004)ADSCrossRefGoogle Scholar
  35. Wilson, R.H., Tapp, H.S.: Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods. Trends Anal. Chem. 18(2), 85–93 (1999)CrossRefGoogle Scholar
  36. Yan, P., Dong, R., Zhang, G., Li, H., Ruan, S., Wei, H., Luo, J.: Numerical simulation on the coherent time-critical 2–5 μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile. Opt. Commun. 293, 133–138 (2013)ADSCrossRefGoogle Scholar
  37. Yi, C., Zhang, P., Chen, F., Dai, S., Wang, X., Tiefeng, X., Nie, Q.: Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers. Appl. Phys. B 116(3), 653–658 (2014)ADSCrossRefGoogle Scholar
  38. Zhang, H., Wang, Q., Yang, B., Yu, L.: Dispersion properties of hollow-core photonic bandgap fibers based on a square lattice cladding. Opt. Commun. 281(13), 3486–3491 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Erlei Wang
    • 1
  • Jia Li
    • 2
  • Jin Li
    • 1
  • Quan Cheng
    • 1
  • Xiaodong Zhou
    • 1
  • Haiming Jiang
    • 3
  1. 1.School of Mechanical and Electrical EngineeringZhouKou Normal UniversityZhoukouChina
  2. 2.The Hospital Affiliated to Zhoukou Normal UniversityZhoukouChina
  3. 3.Guangdong Provincial Key Laboratory of Micro-nano Manufacturing Technology and EquipmentGuangdong University of TechnologyGuangzhouChina

Personalised recommendations