Advertisement

Chirped soliton solutions in optical medium

  • E. Tala-Tebue
  • Z. I. Djoufack
  • S. B. Yamgoue
  • A. Kenfack-Jiotsa
  • T. C. Kofané
Article
  • 29 Downloads

Abstract

In this paper, we study a nonlinear Schrödinger equation with quintic nonlinearity, self-steepening and self-frequency shift terms describing the polarization mode in an optical fiber. As results, several new chirped soliton solutions not yet reported in the literature are obtained. These solutions are found without using computer codes. The solutions are bright, dark and cnoidal solitons. The method used here is very effective and simple and can be applied to other types of nonlinear equations.

Keywords

Nonlinear Schrödinger equation Optical fiber New chirped soliton solutions 

Notes

Acknowledgements

The authors wish to thank the anonymous reviewers for their helpful comments and suggestions. They are also grateful to OQEl for their help during the production of this work.

References

  1. Abdel, K.D., Faical, A., Triki, H., Biswas, A., Zhou, Q., Seithuti, P.M., Belic, M.: Propagation of chirped gray optical dips in nonlinear metamaterials. Opt. Commun. 430, 461–466 (2019)ADSCrossRefGoogle Scholar
  2. Abdoulkary, S., Mohamadou, A., Dafounansou, O., Yamigno, D.S.: Exact solutions of the nonlinear differential-difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G’/G)-expansion method. Chin. Phys. B 23, 120506–120506 (2014)CrossRefGoogle Scholar
  3. Abdul-Majid, W.: The tanh method for traveling wave solutions to the Zhiber–Shabat and other related equations. Commun. Nonlinear Sci. Numer. Simul. 13, 584–592 (2008)ADSMathSciNetCrossRefGoogle Scholar
  4. Agarwal, G.P.: Nonlinear Fiber Optics. Academic Press, London (2001)Google Scholar
  5. Alka, A.G., Rama, G., Kumar, C.N., Thokala, S.R.: Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84(1–6), 063830-1–063830-6 (2011)Google Scholar
  6. Arbabi, S., Najafi, M.: Exact solitary wave solutions of the complex nonlinear Schrödinger equations. Optik 127, 4682–4688 (2016)ADSCrossRefGoogle Scholar
  7. Arshad, M., Seadawy, A.R., Dianchen, L.: Optical soliton solutions of the generalized higher-order nonlinear Schrödinger equations and their applications. Opt. Quantum Electron. 421, 1–16 (2017)Google Scholar
  8. Bekir, A.: Application of the Exp-function method for nonlinear differential-difference equations. Appl. Math. Comput. 215, 4049–4053 (2010)ADSMathSciNetzbMATHGoogle Scholar
  9. Bekir, A., Kaplan, M.: Exponential rational function method for solving nonlinear equations arising in various physical models. Chin. J. Phys. 54, 365–370 (2016)MathSciNetCrossRefGoogle Scholar
  10. Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  11. Biswas, A., Fessak, M., Johnson, S., Beatrice, S., Milovic, D., Jovanoski, Z., Kohl, R., Majid, F.: Optical soliton perturbation in non-Kerr law media: traveling wave solution. Opt. Laser Technol. 44, 1775–1780 (2012)Google Scholar
  12. Boudoue, H.M., Gambo, B., Serge Doka, Y., Kofane, T.C.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84, 171–177 (2016)MathSciNetCrossRefGoogle Scholar
  13. Chunyu, Y., Wenyi, L., Weitian, Y., Mengli, L., Yujia, Z., Guoli, M., Ming, L., Wenjun, L.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dyn. 92(2), 203–213 (2018)CrossRefGoogle Scholar
  14. Dianchen, L., Seadawy, A.R., Arshad, M.: Bright-dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications. Opt. Quantum Electron. 23, 1–10 (2018)Google Scholar
  15. Doka Yamigno, S., Mibaile, J., Gambo, B., Kofane, T.C.: Optical chirped soliton in metamaterials. Nonlinear Dyn. 90, 13–18 (2017)MathSciNetCrossRefGoogle Scholar
  16. Fan, E.G.: Extended Tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)ADSMathSciNetCrossRefGoogle Scholar
  17. Gouveia-Neto, A.S., Gomes, A.S.L., Taylor, J.R.: Pulses of four optical cycles from an optimized optical fibre grating pair soliton pulse compressor at 1.32 \(\mu m\). J. Mod. Opt. 35, 7–10 (1988)ADSCrossRefGoogle Scholar
  18. Goyal, A.A., Gupta, R., Kumar, C.N., Raju, T.S.: Chirped femtosecond solitons and double-kink solitons in the cubicquintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84(6), 063810–063817 (2011)CrossRefGoogle Scholar
  19. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)ADSCrossRefGoogle Scholar
  20. Hosseini, K., Zabihi, A., Samadani, F., Ansari, R.: New explicit exact solutions of the unstable nonlinear Schrödinger’s equation using the expa and hyperbolic function methods. Opt. Quantum Electron. 82, 1–8 (2018)Google Scholar
  21. Inc, M., Evans, D.J.: On travelling wave solutions of some nonlinear evolution equations. Int. J. Comput. Math. 81, 191–202 (2004)MathSciNetCrossRefGoogle Scholar
  22. Jinping, T., Guosheng, Z.: Chirped soliton-like solutions for nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 262, 257–262 (2006)CrossRefGoogle Scholar
  23. Kaplan, M., Arzu, A., Bekir, A.: Solving space-time fractional differential equations by using modified simple equation method. Commun. Theor. Phys. 65, 563–568 (2016)ADSMathSciNetCrossRefGoogle Scholar
  24. Kuang, Z., Yueyi, Y., Dawei, Z., Xumin, D., Badreddine, R., Shah, N.B., Manjun, L., Kun, T., Qun, W.: Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt. Express 26, 1351–1360 (2018)CrossRefGoogle Scholar
  25. Kudryashov, N.A.: Methods of nonlinear mathematical Phys. Intellect. 364 (2010) (in Russian) Google Scholar
  26. Li, Q., Kutz, J.N., Wai, P.K.A.: Cascaded higher order soliton for non-adiabatic pulse compression. J. Opt. Soc. Am. B 27, 2180–2189 (2010)ADSCrossRefGoogle Scholar
  27. Lian-Li, F., Shou-Fu, T., Hui, Y., Li, W., Tian-Tian, Z.: On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Eur. Phys. J. Plus 131(241), 1–18 (2016)Google Scholar
  28. Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)ADSMathSciNetCrossRefGoogle Scholar
  29. Liu, M., Liu, W., Yan, P., Fang, S., Teng, H., Wei, Z.: Highpower MoTe\(_{2}\)-based passively Q-switched erbium-doped fiber laser. Chin. Opt. Lett. 16, 020007-1–020007-5 (2018)Google Scholar
  30. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)ADSMathSciNetCrossRefGoogle Scholar
  31. Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan\((\phi (\xi )/2)\)-expansion method. Optik 127, 4222–4245 (2016)ADSCrossRefGoogle Scholar
  32. Mibaile, J., Malwe Boudoue, H., Gambo, B., Yamigno Doka, S., Kofane, T.C.: Chirped solitons in derivative nonlinear Schrödinger equation. Chaos Solitons Fractals 107, 49–54 (2018)MathSciNetCrossRefGoogle Scholar
  33. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)ADSCrossRefGoogle Scholar
  34. Russell, J.S.: Report on waves. In: Fourteenth Meeting of the British Association for the Advancement of Science (1844)Google Scholar
  35. Seadawy, A.R.: Modulation instability analysis for the generalized derivative higher order nonlinear Schrodinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31, 1353–1362 (2017)MathSciNetCrossRefGoogle Scholar
  36. Seadawy, A.R., Lu, D.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability. Results Phys. 7, 43–48 (2017)ADSCrossRefGoogle Scholar
  37. Tala-Tebue, E., Tsobgni-Fozap, D.C., Kenfack-Jiotsa, A., Kofane, T.C.: Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G’/G)-expansion method including the generalized Riccati equation. Eur. Phys. J. Plus 129, 1–10 (2014)CrossRefGoogle Scholar
  38. Tala-Tebue, E., Djoufack, Z.I., Fendzi-Donfack, E., Kenfack-Jiotsa, A., Kofané, T.C.: Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 127, 11124–11130 (2016)ADSCrossRefGoogle Scholar
  39. Tala-Tebue, E., Djoufack, Z.I., Kenfack-Jiotsa, A., Kapche-Tagne, F., Kofané, T.C.: Second neighbors inducing common frequencies for bright and dark solitons. Eur. Phys. J. Plus 132, 1–10 (2017)CrossRefGoogle Scholar
  40. Tala-Tebue, E., Seadawy, A.R., Kamdoum-Tamo, P.H., Lu, D.: Dispersive optical soliton solutions of the higher order nonlinear Schrodinger dynamical equation via two diferent methods and its applications. Eur. Phys. J. Plus 133, 289-1–289-10 (2018)Google Scholar
  41. Triki, H., Porsezian, K., Philippe, G.: Chirped soliton solutions for the generalized nonlinear Schrödinger equation with polynomial nonlinearity and non-Kerr terms of arbitrary order. J. Opt. 18, 1–9 (2016)CrossRefGoogle Scholar
  42. Triki, H., Biswas, A., Babatin, M.M., Zhou, Q.: Chirped dark solitons in optical metamaterials. Optik 158, 312–315 (2018)ADSCrossRefGoogle Scholar
  43. Wang, M.L.: Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A. 199, 169–172 (1995)ADSMathSciNetCrossRefGoogle Scholar
  44. Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)ADSMathSciNetCrossRefGoogle Scholar
  45. Weitian, Y., Chunyu, Y., Mengli, L., Yujia, Z., Wenjun, L.: Interactions of solitons, dromion-like structures and butterfly-shaped pulses for variable coefficient nonlinear Schrödinger equation. Optik 159, 21–30 (2018)CrossRefGoogle Scholar
  46. Wenjun, L., Ya-Nan, Z., Mengli, L., Bo, W., Shaobo, F., Hao, T., Ming, L., Li-Min, L., Zhiyi, W.: Optical properties and applications for MoS\(_{2}\)–Sb\(_2\)Te\(_3\)–MoS\(_2\) heterostructure materials. Photon. Res. 6, 220–227 (2018)CrossRefGoogle Scholar
  47. Yan, Z.Y.: Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fractals 18, 299–309 (2003)ADSMathSciNetCrossRefGoogle Scholar
  48. Yomba, E., Gholam-Ali, Z.: Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers. CHAOS 26, 1–11 (2016)CrossRefGoogle Scholar
  49. Zayed, E.M.E., Abdul-Ghani, A.: New extended auxiliary equation method for finding many new Jacobi elliptic function solutions of three nonlinear Schrödinger equations. Waves Random Complex Media 27, 420–439 (2016a)ADSCrossRefGoogle Scholar
  50. Zayed, E.M.E., Abdul-Ghani, A.: Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation. Optik 127, 4970–4983 (2016b)ADSCrossRefGoogle Scholar
  51. Zayed, E.M.E., Alurrfi, K.A.E.: Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Appl. Math. Comput. 289, 111–131 (2016)MathSciNetGoogle Scholar
  52. Zayed, E.M.E., Zedan, H.A., Gepreel, K.A.: On the solitary wave solutions for nonlinear Hirota–Sasuma coupled KDV equations. Chaos Solitons Fractals 22, 285–303 (2004)ADSMathSciNetCrossRefGoogle Scholar
  53. Zayed, E.M.E., Ayad, M.S., Alurrfi, K.A.E.: The (G′/G,1/G)-expansion method and its applications for constructing many new exact solutions of the higherorder nonlinear Schrödinger equation and the quantum Zakharov–Kuznetsov equation. Opt. Quantum Electron. 96, 1–18 (2018)Google Scholar
  54. Zhao, H., Ji-Guang, H., Wei-Tao, W., Hong-Yong, A.: Applications of extended hyperbolic function method for quintic discrete nonlinear Schrödinger equation. Commun. Theor. Phys. 47, 474–478 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. Tala-Tebue
    • 1
    • 3
  • Z. I. Djoufack
    • 1
  • S. B. Yamgoue
    • 2
  • A. Kenfack-Jiotsa
    • 3
  • T. C. Kofané
    • 4
  1. 1.Laboratoire d’Automatique et d’Informatique Appliquée (LAIA), IUT-FV of BandjounThe University of DschangBandjounCameroon
  2. 2.Department of Physics, The Higher Teachers’ Training CollegeUniversity of BamendaBamendaCameroon
  3. 3.Nonlinear Physics and Complex Systems Group, Department of Physics, The Higher Teachers’ Training CollegeUniversity of Yaoundé IYaoundéCameroon
  4. 4.Laboratory of Mechanics, Department of Physics, Faculty of SciencesUniversity of Yaounde IYaoundéCameroon

Personalised recommendations