Nonlinear manipulation of surface plasmons on graphene-TMDC Bragg reflectors

  • Fatemeh Davoodi
  • Nosrat GranpayehEmail author


In this study, we benefit from the nonlinear optical tunability of the graphene-transition metal dichalcogenide (G-TMDC) heterostructure and the strong confinement of the electromagnetic fields of surface plasmon polaritons (SPPs) on graphene in order to propose a highly tunable nonlinear optical Bragg reflector. Recently, two-dimensional (2D) TMDCs are the subject of intense researches because of their nonlinear optical properties at near infrared wavelengths which are very intriguing for various optical applications. We choose two kinds of 2D-TMDCs, MoSe2 and WSe2, with the strongest second order optical nonlinearity at near infrared range to properly design the periodic variation of the propagating SPP waves on the graphene layer. We utilize theoretical method of quantum electrostatic heterostructure to compute the dielectric function of graphene-TMDCs. Different nonlinearities of two TMDCs lead to noticeable tuning of the full width at half maximum (FWHM) and the central Bragg wavelength of the reflector which let design various optical devices. We design an add/drop filter, a nonlinear switch, and an AND/OR optical logic gate based on our proposed Bragg reflector. Our finite difference time domain numerical and transfer matrix analytical results reveal that by increment of the optical intensity up to 6 MW/cm2 which is below the pulse damage threshold of graphene, due to the second order nonlinearity, a 10-nm red-shift in central Bragg wavelength is observed and the 20-nm FWHM at linear regime decreases to 1.5 nm. The SPP intensities of 0.8 MW/cm2 and 1.53 MW/cm2 fulfill the requirements for AND and OR logical operations with 57 and 66.51 dB extinction ratios, respectively.


Bragg grating Surface plasmons Nonlinear optics Nonlinear optical materials and devices Optical switches 


  1. Al Sayem, A., Rahman, M., Mahdy, M.R.C., Jahangir, I., Rahman, M.S.: Negative refraction with superior transmission in graphene hexagonal boron nitride multilayer hyper crystal. Sci. Rep. 6, 25442(1–11) (2016)CrossRefADSGoogle Scholar
  2. Andersen, K., Latini, S., Thygesen, K.S.: Dielectric genome of van der Waals heterostructures. Nano Lett. 15, 4616–4621 (2015)CrossRefADSGoogle Scholar
  3. Asgari, S., Granpayeh, N.: Applications of tunable nano-scale mid-infrared graphene-based slot cavity in nano photonic integrated circuits. IEEE Trans. Nanotechnol. 17, 533–542 (2018)CrossRefADSGoogle Scholar
  4. Autere, A., Jussila, H., Dai, Y., Wang, Y., Lipsanen, H., Sun, Z.: Nonlinear optics with 2D layered materials. Adv. Mater. 15, 1705963 (1–24) (2018)Google Scholar
  5. Cai, T., Tu, M.W., Zhang, X., Huang, B., Wilson, N., Seyler, K., Zhu, L., Taniguchi, T., Watanabe, K., McGuire, M., Cobden, D., Xiao, D., Yao, W., Xu, X.: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 4851, 1–10 (2018)Google Scholar
  6. Capmany, J., Domenech, D., Muñoz, P.: Silicon graphene Bragg gratings. Opt. Express 22, 5283–5290 (2014)CrossRefADSGoogle Scholar
  7. Cheng, R., Li, D., Zhou, H., Wang, Ch., Yin, A., Jiang, S., Liu, Y., Chen, Y., Huang, Y., Duan, X.: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014)CrossRefADSGoogle Scholar
  8. Cong, C., Shang, J., Niu, L., Wu, L., Chen, Y., Zou, C., Feng, S., Jun Qiu, Z., Hu, L., Tian, P., Liu, Z., Yu, T., Liu, R.: Anti‐stokes photoluminescence of van der Waals layered semiconductor PbI2. Adv. Opt. Mater. 5, 1700609(1–5) (2017)Google Scholar
  9. Currie, M., Caldwell, J.D., Bezares, F.J., Robinson, J.: Quantifying pulsed laser induced damage to graphene. Appl. Phys. Lett. 99, 211909 (1–4) (2011)ADSGoogle Scholar
  10. Davoodi, F., Granpayeh, N.: All optical logic gates: a tutorial. Inform. Technol. Res. 4, 65–98 (2012)Google Scholar
  11. Davoodi, F., Granpayeh, N.: High performance ultra-compact three channel demultiplexer. Opt. Photon. (IJOP) 8, 57–68 (2014)Google Scholar
  12. Davoodi, F., Granpayeh, N.: Finite-difference time-domain modeling of monolayer graphene devices at near-infrared wavelengths. J. Nanophoton. 11, 046008(1–14) (2017)CrossRefADSGoogle Scholar
  13. Davoodi, F., Granpayeh, N.: Near-infrared absorbers based on the heterostructures of two-dimensional materials. Appl. Opt. 57, 1358–1366 (2018)CrossRefADSGoogle Scholar
  14. Deng, G., Yang, J., Yin, Z.: Broadband terahertz metamaterial absorber based on tantalum nitride. Appl. Opt. 56, 2449–2454 (2017)CrossRefADSGoogle Scholar
  15. Farmani, A., Miri, M., Sheikhi, M.H.: Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Opt. Commun. 391, 68–76 (2017)CrossRefADSGoogle Scholar
  16. Farmani, A., Miri, M., Sheikhi, M.H.: Design of high extinction ratio tunable graphene on white graphene polarizer. IEEE Photon. Technol. Lett. 30, 153–156 (2018)CrossRefADSGoogle Scholar
  17. Foroughi, N.V., Haddadpour, A., Veronis, G.: Tunable spatial mode converters and optical diodes for graphene parallel plate waveguides. Opt. Express 24, 23883–23897 (2016)CrossRefADSGoogle Scholar
  18. Fryett, T., Zhan, A., Majumdar, A.: Cavity nonlinear optics with layered materials. Nanophotonics 7, 355–370 (2017)CrossRefGoogle Scholar
  19. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013)CrossRefGoogle Scholar
  20. Gric, T., Hess, O.: Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt. Express 25, 11466–11476 (2017)CrossRefADSGoogle Scholar
  21. Hak, K.D., Lim, D.: Optical second-harmonic generation in few-layer MoSe2. Korean Phys. Soc. 66, 816–820 (2015)CrossRefGoogle Scholar
  22. Hu, L., Wei, D., Huang, X.: Second harmonic generation property of monolayer TMDCCs and its potential application in producing terahertz radiation. Chem. Phys. 147, 244701(1–7) (2017)ADSGoogle Scholar
  23. Jablan, M., Buljan, H., Soljacic, M.: Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)CrossRefADSGoogle Scholar
  24. Jiang, Y., Miao, L., Jiang, G., Chen, Y., Qi, X., FangJiang, X., Zhang, H., Wen, S.: Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep. 5, 16372 (1–12) (2015)ADSGoogle Scholar
  25. Li, M.Y., Shi, Y., Cheng, C., Lu, L.S., Lin, Y.C., Tang, H.L., Tsai, M.L., Chu, C., Wei, K.H., He, J.H., Chang, W.H., Suenaga, K., Li, L.J.: Epitaxial growth of a monolayerWSe2-MoS2 lateral p-n junction. Science 349, 524–528 (2015)CrossRefADSGoogle Scholar
  26. Li, J., Tao, J., Hui, C.Z., Huang, X.G.: All-optical controlling based on nonlinear graphene plasmonic waveguides. Opt. Express 24, 22169–22176 (2016)CrossRefADSGoogle Scholar
  27. Mishchenko, A., Tu, J.-S., Cao, Y., Gorbachev, R., Wallbank, J., Greenaway, M., Morozov, V., Morozov, S., Zhu, M., Wong, S.L., Withers, F., Woods, C., Kim, Y.-J., Watanabe, K., Taniguchi, T., Vdovin, E., Makarovsky, O., Fromhold, T., Falko, V., Geim, A., Eaves, L., Novoselov, K.: Twist-controlled resonant tunneling in graphene-boron nitride-graphene heterostructures. Nat. Nanotechnol. 9, 808–908 (2014)CrossRefADSGoogle Scholar
  28. Mishra, A.K., Mishra, S.K.: Infrared SPR sensitivity enhancement using ITO/Ti O2/silicon over lays Infrared SPR sensitivity enhancement using ITO/TiO2/silicon overlays. Eur. Phys. Lett. 112, 1–5 (2015)CrossRefGoogle Scholar
  29. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)CrossRefADSGoogle Scholar
  30. Park, S.Y., Kim, Y.H., Lee, S.Y., Sohn, W., Lee, J.E., Kim, D.H., Shim, Y.S., Kwon, K.C., Choi, K.S., Yoo, H.J., Suh, J.M., Ko, M., Lee, J.H., Lee, M.J., Kim, S.Y., Lee, M.H., Jang, H.W.: Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. Mater. Chem. A6, 5016–5024 (2018)CrossRefGoogle Scholar
  31. Ponraj, J.S., Xu, Z., Dhanabalan, S.C., Mu, H., Wang, Y., Yuan, J., Li, P., Thakur, S., Ashrafi, M., Mccoubrey, K., Zhang, Y., Li, S., Zhang, H., Bao, Q.: Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnol 27, 462001 (2016)CrossRefGoogle Scholar
  32. Qin, Ch., Wang, B., Long, H., Wang, K., Lu, P.: Bloch mode engineering in graphene modulated periodic waveguides and cavities. J. Opt. Soc. Am. B 32, 1748–1753 (2015)CrossRefADSGoogle Scholar
  33. Seyler, K.L., Schaibley, J.R., Gong, P., Rivera, P., Jones, A.M., Wu, S., Yan, J., Mandrus, D.G., Yao, W., Xu, X.: Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nano 10, 407–411 (2015)CrossRefGoogle Scholar
  34. Shanmugam, M., Gedrim, R.J., Songa, E.S., Yu, B.: Two dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications. Nanoscale 6, 12682–12689 (2014)CrossRefADSGoogle Scholar
  35. Shi, Y., Zhou, W., Lu, A.Y., Fang, W., Lee, Y.H., Hsu, A.L., Kim, S.M., Kim, K.K., Yang, H.Y., Li, L.J., Idrobo, J.C., Kong, J.: van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012)CrossRefADSGoogle Scholar
  36. Sun, Z., Martinez, A., Wang, F.: Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016)CrossRefADSGoogle Scholar
  37. Susner, M.A., Chyasnavichyus, M., McGuire, M., Ganesh, P., Maksymovych, P.: Metal thio- and selenophosphates as multifunctional van der waals layered materials. Adv. Mater. 29, 1602852(1-29) (2017)CrossRefGoogle Scholar
  38. Toflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (2005)Google Scholar
  39. Tsipas, P., Tsoutsou, D., Fragkos, S., Sant, R., Alvarez, C., Okuno, H., Renaud, G., Alcotte, R., Baron, T., Dimoulas, A.: Massless dirac fermions in ZrTe2 semimetal grown on InAs(111) by van der Waals epitaxy. ACS Nano 12, 1696–1703 (2018)CrossRefGoogle Scholar
  40. Wakatsuki, R., Saito, Y., Hoshino, S., Itahashi, Y.M., Ideue, T., Ezawa, M., Iwasa, Y., Nagaosa, N.: Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e160239 (1–8) (2017)CrossRefGoogle Scholar
  41. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)CrossRefADSGoogle Scholar
  42. Wu, J., Jiang, L., Guo, J., Dai, X., Xiang, Y., Wen, S.: Tunable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal. Opt. Express 24, 17103–17114 (2016)CrossRefADSGoogle Scholar
  43. Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014)CrossRefADSGoogle Scholar
  44. Xiao, B., Gu, M., Xiao, S.: Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl. Opt. 56, 5458–5462 (2017)CrossRefADSGoogle Scholar
  45. Yang, W., Chen, G., Shi, Z., Liu, ChCh., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., Watanabe, K., Taniguchi, T., Yao, Y., Zhang, Y., Zhang, G.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013)CrossRefADSGoogle Scholar
  46. Ye, L., Chen, Y., Cai, G., Liu, N., Zhu, J., Song, Z., HuoLiu, Q.: Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Opt. Express 25, 11223–11232 (2017)CrossRefADSGoogle Scholar
  47. Yu, W.J., Liu, Y., Zhou, H., Yin, A., Li, Z., Huang, Y., Duan, X.F.: Highly efficient gate tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013)CrossRefADSGoogle Scholar
  48. Zhan, T., Shi, X., Dai, Y., Liu, X., Zi, J.: Transfer matrix method for optics in graphene layers. Condens. Matter. 25, 215301 (1–10) (2013)CrossRefADSGoogle Scholar
  49. Zhang, Y., Yu, H., Zhang, R., Zhao, G., Zhang, H., Chen, Y., Mei, L., Tonelli, M., Wang, J.: Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range. Opt. Lett. 42, 547–550 (2017)CrossRefADSGoogle Scholar
  50. Zhong, D., Seyler, K.L., Linpeng, X., Cheng, R., Sivadas, N., Huang, B., Schmidgall, E., Taniguchi, T., Watanabe, K., McGuire, M.A., Yao, W., Xiao, D., Fu, K.-M.C., Xu, X.: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, 1–6 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Excellence in Electromagnetics, Faculty of Electrical EngineeringK.N. Toosi University of TechnologyTehranIran

Personalised recommendations