Advertisement

Novel analytical model for nano-coupler between metal–insulator–metal plasmonic and dielectric slab waveguides

  • Mohammad Bagher Heydari
  • Masoud Asgari
  • Niloofar Jafari
Article
  • 21 Downloads

Abstract

We propose a new analytical model for nano-coupler between metal–insulator–metal (MIM) plasmonic and dielectric slab waveguides. By using the boundary conditions and mode matching technique, the analytical expression for transmission coefficient can be achieved at the plasmonic–dielectric junction. The theoretical results are compared with the simulation results of COMSOL software. A good agreement between the simulation and theoretical results is observed which validates our analytical model. The maximum transmission efficiency of the coupler can be obtained by changing the width of the dielectric (Wd) and air (Wa) layers. For the nano-coupler with Wd = 300 nm at the wavelength 1.55 μm, the results show that maximum transmission efficiency of 75% can be achieved at the width of 63 nm (Wa= 63 nm). Our analytical model is accurate and can calculate the modal properties of the proposed coupler.

Keywords

MIM waveguide Plasmonic Dielectric slab waveguide Analytical model 

References

  1. Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Ebbesen, T.W.: Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95(4), 046802 (2005)ADSCrossRefGoogle Scholar
  2. Chen, L., Shakya, J., Lipson, M.: Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt. Lett. 31(14), 2133–2135 (2006)ADSCrossRefGoogle Scholar
  3. Chu, H., Ewe, W., Koh, W., Li, E.: Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain. Appl. Phys. Lett. 92(10), 103103 (2008)ADSCrossRefGoogle Scholar
  4. Diest, K., Dionne, J.A., Spain, M., Atwater, H.A.: Tunable color filters based on metal–insulator–metal resonators. Nano Lett. 9(7), 2579–2583 (2009)ADSCrossRefGoogle Scholar
  5. Emboras, A., Briggs, R., Najar, A., Nambiar, S., Delacour, C., Grosse, P., Augendre, E., Fedeli, J., De Salvo, B., Atwater, H.: Efficient coupler between silicon photonic and metal–insulator–silicon-metal plasmonic waveguides. Appl. Phys. Lett. 101(25), 251117 (2012)ADSCrossRefGoogle Scholar
  6. Ginzburg, P., Arbel, D., Orenstein, M.: Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Opt. Lett. 31(22), 3288–3290 (2006)ADSCrossRefGoogle Scholar
  7. Ginzburg, P., Orenstein, M.: Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching. Opt. Express 15(11), 6762–6767 (2007)ADSCrossRefGoogle Scholar
  8. Han, Z., Forsberg, E., He, S.: Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon. Technol. Lett. 19(2), 91–93 (2007)ADSCrossRefGoogle Scholar
  9. Hodaei, H., Rezaei, M., Miri, M., Bahadori, M., Eshaghian, A., Mehrany, K.: Easy-to-design nano-coupler between metal–insulator–metal plasmonic and dielectric slab waveguides. Plasmonics 8(2), 1123–1128 (2013)CrossRefGoogle Scholar
  10. Kusunoki, F., Yotsuya, T., Takahara, J., Kobayashi, T.: Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Appl. Phys. Lett. 86(21), 211101 (2005)ADSCrossRefGoogle Scholar
  11. Lee, S.-Y., Park, J., Kang, M., Lee, B.: Highly efficient plasmonic interconnector based on the asymmetric junction between metal–dielectric–metal and dielectric slab waveguides. Opt. Express 19(10), 9562–9574 (2011)ADSCrossRefGoogle Scholar
  12. Lima, E.P., Rodriguez-Esquerre, V., Mercedes, C.R., Dourado-Sisnando, A.: Design of dielectric to plasmonic waveguide power transfer couplers. In: Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XV, p. 103462P. International Society for Optics and Photonics (2017)Google Scholar
  13. Liu, L., Han, Z., He, S.: Novel surface plasmon waveguide for high integration. Opt. Express 13(17), 6645–6650 (2005)ADSCrossRefGoogle Scholar
  14. Liu, Y., Lai, Y., Chang, K.: Plasmonic coupler for silicon-based micro-slabs to plasominc nano-gap waveguide mode coversion enhancement. J. Lightwave Technol. 31(11), 1708–1712 (2013)ADSCrossRefGoogle Scholar
  15. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)CrossRefGoogle Scholar
  16. Mei, X., Huang, X., Tao, J., Zhu, J., Zhu, Y., Jin, X.: A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities. JOSA B 27(12), 2707–2713 (2010)ADSCrossRefGoogle Scholar
  17. Min, C., Veronis, G.: Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt. Express 17(13), 10757–10766 (2009)ADSCrossRefGoogle Scholar
  18. Mote, R.G., Chu, H.-S., Bai, P., Li, E.-P.: Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Opt. Commun. 285(18), 3709–3713 (2012)ADSCrossRefGoogle Scholar
  19. Pile, D., Gramotnev, D.K.: Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89(4), 041111 (2006)ADSCrossRefGoogle Scholar
  20. Pile, D.F., Ogawa, T., Gramotnev, D.K., Matsuzaki, Y., Vernon, K.C., Yamaguchi, K., Okamoto, T., Haraguchi, M., Fukui, M.: Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87(26), 261114 (2005)ADSCrossRefGoogle Scholar
  21. Pozar, D.M.: Microwave engineering. Wiley, New York (2009)Google Scholar
  22. Reiserer, A.A., Huang, J.-S., Hecht, B., Brixner, T.: Subwavelength broadband splitters and switches for femtosecond plasmonic signals. Opt. Express 18(11), 11810–11820 (2010)ADSCrossRefGoogle Scholar
  23. Rezaei, M., Jalaly, S., Miri, M., Khavasi, A., Fard, A.P., Mehrany, K., Rashidian, B.: A distributed circuit model for side-coupled nanoplasmonic structures with metal–insulator–metal arrangement. IEEE J. Sel. Top. Quantum Electron. 18(6), 1692–1699 (2012)ADSCrossRefGoogle Scholar
  24. Tamir, T.: Integrated Optics, Vol. 7 of Topics in Applied Physics. Springer, New York (1975)Google Scholar
  25. Tanaka, K., Tanaka, M.: Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett. 82(8), 1158–1160 (2003)ADSCrossRefGoogle Scholar
  26. Veronis, G., Fan, S.: Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Opt. Express 15(3), 1211–1221 (2007)ADSCrossRefGoogle Scholar
  27. Wahsheh, R.A., Lu, Z., Abushagur, M.A.: Nanoplasmonic couplers and splitters. Opt. Express 17(21), 19033–19040 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentIran University of Science and Technology (IUST)TehranIran
  2. 2.Electrical Engineering GroupImam Khomeini International University (IKIU)QazvinIran
  3. 3.Electrical Engineering GroupPayam Noor UniversityZanjanIran

Personalised recommendations