Identifying the incidence level of periodontal disease through hyperspectral imaging

  • Szu-Chien Chang
  • Hao-Yi Syu
  • Yin-Lai Wang
  • Chiu-Jung Lai
  • Shuan-Yu Huang
  • Hsiang-Chen WangEmail author


This study proposes a method for staging periodontal disease through hyperspectral imaging technique. The study is composed of two parts. The first part shows the spectrum of gingival images that is simulated by hyperspectral imaging systematic analysis. The second part uses the principal component score chart for staging periodontal disease based on the obtained mean simulation spectrum. The experimental results show the staging results of periodontal disease through principal component score chart, allowing us to clearly identify the spectral features of normal gingiva and mild, moderate, and severe periodontitis. Our method can identify the stage of periodontal disease accurately and has a sensitivity and specificity of approximately 0.83 and 0.938, respectively.


Periodontal disease Optical diagnosis Hyperspectral imaging Spectral information 



This research was supported by the Ministry of Science and Technology, The Republic of China under the Grants MOST104-2221-E-194-054, 105-2923-E-194-003-MY3, 105-2314-B-037-019-MY3, 105-2112-M-194-005, and Kaohsiung Armed Forces General Hospital research project 106-23.


  1. Antunes, A., Salvador, V.L.R., Scapin, M.A., Rossi, W., Zezell, D.M.: Nanosecond Nd: YAG laser on dental enamel: compositional analysis by X-ray fluorescence. Laser Phys. 2, 318–323 (2005)ADSCrossRefGoogle Scholar
  2. Albert, A.: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York (1972)zbMATHGoogle Scholar
  3. Basiri, A., Nabili, M., Mathews, S., Libin, A., Groah, S., Noordmans, H.J., Ramella-Roman, J.C.: Use of a multi-spectral camera in the characterization of skin wounds. Opt. Express 18, 3244–3257 (2010)ADSCrossRefGoogle Scholar
  4. Claudia, M., van der Veen, M.H., Ruben, J.L., Jaap, J., Dogagiu, A.: Optical path-length spectroscopy of incipient caries lesions in relation to quantitative light-induced fluorescence and lesion characteristics. Appl. Opt. 42, 2979–2986 (2003)ADSCrossRefGoogle Scholar
  5. Chen, Y., Otis, L., Piao, D., Zhu, Q.: Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system. Appl. Opt. 44, 2041–2048 (2005)ADSCrossRefGoogle Scholar
  6. Chaves, E.S., Jeffcoat, M.K., Ryerson, C.C., Snyder, B.: Persistent bacterial colonization of Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans in periodontitis and its association with alveolar bone loss after 6 months of therapy. J. Clin. Periodontol. 27, 897–903 (2000)CrossRefGoogle Scholar
  7. Clerehugh, V., Tugnait, A., Genco, R.J.: Periodontology at a Glance. Wiley (2009)Google Scholar
  8. Gilbert, G.H., Meng, X., Duncan, R.P., Shelton, B.J.: Incidence of tooth loss and prosthodontic dental care: effect on chewing difficulty onset, a component of oral health–related quality of life. J. Am. 52, 880–885 (2004)Google Scholar
  9. Gazmeh, M., Bahreini, M., Tavassoli, S.H.: Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis. Appl. Opt. 54, 123–131 (2015)ADSCrossRefGoogle Scholar
  10. Green, P., MacDonald, L.: Colour Engineering: Achieving Device Independent Colour. Wiley, New York (2002)Google Scholar
  11. Guo, N., Zeng, L., Wu, Q.: A method based on multispectral imaging technique for White Blood Cell segmentation. Comput. Biol. Med. 37, 70–76 (2007)CrossRefGoogle Scholar
  12. Highfield, J.: Diagnosis and classification of periodontal disease Aust Dent J. 54, S11–S26 (2009)Google Scholar
  13. Hsiao, Y.P., Wang, H.C., Chen, S.H., Tsai, C.H., Yang, J.H.: Identified early stage mycosis fungoides from psoriasis and atopic dermatitis using non-invasive color contrast enhancement by LEDs lighting. Opt. Quant. Electron 47, 1599–1611 (2015)CrossRefGoogle Scholar
  14. Hsiao, Y.P., Wang, H.C., Chen, S.H., Tsai, C.H., Yang, J.H.: Optical perception for detection of cutaneous T-cell lymphoma by multi-spectral imaging. J. OPTICS-UK 16(12), 125301 (2014)ADSCrossRefGoogle Scholar
  15. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417–441 (1933)CrossRefGoogle Scholar
  16. Jen, C.P., Huang, C.T., Chen, Y.S., Kuo, C.T., Wang, H.C.: Diagnosis of human bladder cancer cells at different stages using multispectral imaging microscopy. IEEE J. Sel. Top. Quantum Electron. 20(3), 6800808 (2014)Google Scholar
  17. Kang, H.R.: 2006 Computational Color Technology, Chapter 14, p. 301. SPIEGoogle Scholar
  18. Krzanowski, W.: Principles of Multivariate Analysis: A User’s Perspective. OUP, Oxford (2000)zbMATHGoogle Scholar
  19. Lamar, M.V., Bhuiyan, S., Iwata, A.: Hand alphabet recognition using morphological PCA and neural networks. In: Proceedings of the International Joint conference (1999)Google Scholar
  20. Petersen, P.E.: Improvement of global oral health - the leadership role of the World Health Organization. Community Dent Health 27, 194–199 (2010)Google Scholar
  21. Pudil, P., Somol, P., Haindl M.: Introduction to Statistical Pattern Recognition. Academic Press (1990)Google Scholar
  22. Renvert, S., Persson, G.R.: Patient-based assessments of clinical periodontal conditions in relation to alveolar bone loss. J. Clin. Periodontol. 31, 208–213 (2004)CrossRefGoogle Scholar
  23. Ramanujam, N., Jolivot, R., Nugroho, H., Vabres, P., Ahmad Fadzil, M.H., Marzani, F., Popp, J.: Validation of a 2D multispectral camera: application to dermatology/cosmetology on a population covering five skin phototypes. Biomed. Opt. 8087, 808729-1–808729-7 (2011)Google Scholar
  24. Schatzle, M., Loe, H., Lang, N.P., Burgin, W., Anerud, A., Boysen, H.: The clinical course of chronic periodontitis. IV. Gingival inflammation as a risk factor in tooth mortality. J. Clin. Periodontol. 31, 1122–1127 (2004)CrossRefGoogle Scholar
  25. Stookey, G.: Emerging methods of caries diagnosis. J. Dent. 65, 1001–1006 (2001)Google Scholar
  26. Subhash, N., Thomas, S.S., Mallia, R.J., Jose, M.: Tooth caries detection by curve fitting of laser-induced fluorescence emission: a comparative evaluation with reflectance spectroscopy. Lasers Surg. 37, 320–328 (2005)CrossRefGoogle Scholar
  27. Smirnov, S.V., Grachev, Y., Tsypkin, A.N., Bespalov, V.G.: Experimental studies of the possibilities of diagnosing caries in the solid tissues of a tooth by means of terahertz radiation. J. Opt. 81, 464–467 (2014)Google Scholar
  28. Takamori, K., Hokari, N., Okumura, Y., Watanabe, S.: Detection of occlusal caries under sealants by use of a laser fluorescence system. J. Clin. 19, 267–271 (2001)Google Scholar
  29. Timchenko, E.V., Timchenko, P.E., Zherdeva, L.A., Volova, L.T., Burda, A.G.: Use of Raman spectroscopy for diagnosis of disease in dental tissue. J. Opt. Technol. 83, 313–317 (2016)CrossRefGoogle Scholar
  30. Takeya, M., Tsumura, N., Haneishi, H., Miyake, Y.: Estimation of transmittance spectra from multiband micrographs of fungi and its application to segmentation of conidia and hyphae. Appl. Opt. 38, 3644–3650 (1999)ADSCrossRefGoogle Scholar
  31. Wang, H.C., Tsai, M.T., Chiang, C.P.: Visual Perception enhancement for detection of cancerous oral tissue by multi-spectral imaging. J. Optics-UK 15(5), 055301 (2013)ADSCrossRefGoogle Scholar
  32. Wang, H.C., Chen, Y.T., Lin, J.T., Chiang, C.P., Cheng, F.H.: Enhanced visualization of oral cavity for early inflamed tissue detection. Opt. Express 18, 11800–11809 (2010)ADSCrossRefGoogle Scholar
  33. Wang, H.C., Chen, Y.T.: Optimal lighting of RGB LEDs for oral cavity detection. Opt. Express 20, 10186–10199 (2012)ADSCrossRefGoogle Scholar
  34. Wu, I.C., Weng, Y.H., Lu, M.Y., Jen, C.P., Fedorov, V.E., Chen, W.C., Wu, M.T., Kuo, C.T., Wang, H.C.: Nano-structure ZnO/Cu2O photoelectrochemical and self-powered biosensor for esophageal cancer cell detection. Opt. Express 25(7), 7689–7706 (2017)ADSCrossRefGoogle Scholar
  35. Yilmaz, I., Bildirici, I.O., Yakar, M., Yildiz, F.: Color calibration for scanners using polynomial transformation. In: XXth ISPRS Congress: Proceedings of commission V, Istanbul, Turkey, pp. 890–895 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of DentistryKaohsiung Armed Forces General HospitalKaohsiung CityTaiwan
  2. 2.Graduate Institute of Opto-Mechatronics and Advanced Institute of Manufacturing with High-tech InnovationsNational Chung Cheng UniversityChia-YiTaiwan
  3. 3.Department of OptometryChung Shan Medical UniversityTaichungTaiwan

Personalised recommendations