Injection-locked range and linewidth measurements at different seed-laser linewidths using a Fabry–Pérot laser-diode

  • Jakup RatkoceriEmail author
  • Bostjan Batagelj


In this paper we experimentally examine the dependence of the injection-locked range magnitude of a Fabry–Pérot (FP) laser on the linewidth of a seed laser. We measure the enhancement of the incident-power-dependent injection-locked range when changing the seed-light linewidth in three different ranges, starting with tens of GHz, then hundreds of MHz, and up to a few hundred kHz. We notice the progressive shrinkage of the locking range with an increase in the linewidth of the seed source. Simultaneously, the linewidth of a FP laser was measured and the cancellation of multiple longitudinal operating modes as well as a great reduction of linewidth are observed with a self-homodyne measurement.


Fabry–Pérot laser diode Semiconductor laser Injection locking Locking range Linewidth reduction 



The authors acknowledge the financial support of the Slovenian Research Agency (Research Core Funding No. P2-0246 “Algorithms and optimization procedures in telecommunications”).


  1. Ali, A.H., Abdul-Wahid, S.N.: Analysis of self-homodyne and delayed self-heterodyne detections for tunable laser source linewidth measurements. IOSR J. Eng. 2(10), 1–6 (2012)Google Scholar
  2. Attygalle, M., Liu, H., Nirmalathas, A.: An all-optical WDM-to-TDM conversion scheme with simultaneous all-optical synchronization for WDM/OTDM network nodes. Opt. Quantum Electron. 33(7–10), 827–840 (2001). CrossRefGoogle Scholar
  3. Batagelj, B., Janyani, V., Tomazic, S.: Research challenges in optical communications toward 2020 and beyond. Inf. Midem. 44(3), 177–184 (2014)Google Scholar
  4. Bondiou, M.: Linewidth of an optical injected semiconductor laser. J. Opt. B Quantum Semiclass. Opt. 1, 1–6 (1999)CrossRefGoogle Scholar
  5. Chen, H.Y., Yeh, C.H., Chow, C.W., Sung, J.Y., Liu, Y.L., Chen, J.: Investigation of using injection-locked Fabry–Pérot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access. IEEE Photonics J. 5(3), 7901208 (2013). ADSCrossRefGoogle Scholar
  6. Dar, A.B., Jha, R.K.: Chromatic dispersion compensation techniques and characterization of fiber Bragg grating for dispersion compensation. Opt. Quantum Electron. 49, 108 (2017). CrossRefGoogle Scholar
  7. Erzen, V., Mikulic, M., B. Batagelj.: Frequency-response measurements of an injection-locked Fabry–Pérot laser diode in a colorless WDM-PON. In: 2015 Workshop on Fiber Optics in Access Network FOAN’2015, pp. 26–30 (2015)Google Scholar
  8. Ghafouri-Shiraz, H., Chu, C.Y.J.: Distributed feedback lasers: an overview. Fiber Integr. Opt. 10(1), 23–47 (1991). ADSCrossRefGoogle Scholar
  9. Guignard, C., Besnard, P.: Experimental injection map of semiconductor laser submitted to filtered feedback. Opt. Quantum Electron. 38, 411–428 (2006). CrossRefGoogle Scholar
  10. Hadley, G.: Injection locking of diode lasers. IEEE J. Quantum Electron. 22(3), 419–426 (1986). ADSCrossRefGoogle Scholar
  11. Henry, C.: Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18(2), 259–264 (1982). ADSCrossRefGoogle Scholar
  12. Hisham, H.K., Mahdiraji, G.A., Abas, A.F., Mahdi, M.A., Adikan, F.R.M.: Frequency modulation response due to the intensity modulation of fiber-grating Fabry–Pérot lasers. J. Mod. Opt. 61(13), 1081–1091 (2014). ADSCrossRefGoogle Scholar
  13. Jabbari, M., Nafar, M., Bahmani-Firouzi, B.: Large signal analysis of distributed feedback laser with three types spatial chirped grating and high reflection: anti reflection facets. IETE J. Res. 59(5), 640–647 (2013). CrossRefGoogle Scholar
  14. Jin X., Chuang, S.L.: Injection-locking in Fabry–Pérot quantum-well lasers. In: 2005 Semiconductor Device Research Symposium, pp. 438–439 (2005)Google Scholar
  15. Jin, X., Chuang, S.L.: Bandwidth enhancement of Fabry–Pérot quantum-well lasers by injection-locking. Solid-State Electron. 50(6), 1141–1149 (2006)ADSCrossRefGoogle Scholar
  16. Kobayashi, S., Yamamoto, Y., Ito, M., Kimura, T.: Direct frequency modulation in AlGaAs semiconductor lasers. IEEE Trans. Microw. Theory Tech. 30(4), 428–441 (1982). ADSCrossRefGoogle Scholar
  17. Krstić, M.M., Crnjanski, J.V., Mašanović, M.L., Johansson, L.A., Coldren, L.A., Gvozdić, D.M.: Multivalued stability map of an injection-locked semiconductor laser. IEEE J. Sel. Top. Quantum Electron. 19(4), 1501408 (2013). ADSCrossRefGoogle Scholar
  18. Lang, R.: Injection locking properties of a semiconductor laser. IEEE J Quantum Electron. 18(6), 976–983 (1982). ADSCrossRefGoogle Scholar
  19. Lau, E.K., Sung, H.K., Wu, M.C.: Frequency response enhancement of optical injection-locked lasers. IEEE J. Quantum Electron. 44(1), 90–99 (2008). ADSCrossRefGoogle Scholar
  20. Lau, E.K., Wong, L.J., Wu, M.C.: Enhanced modulation characteristics of optical injection-locked lasers: a tutorial. IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009). ADSCrossRefGoogle Scholar
  21. Lawrence, J. S.: Diode lasers with optical-feedback, optical-injection, and phase-conjugate feedback. Ph.D. Dissertation, Macquarie University (2000)Google Scholar
  22. Lee, H.K., Cho, H.S., Kim, J.Y., Yoo, S.H., Lee, C.H.: A WDM-PON with an 80 Gb/s capacity based on wavelength-locked Fabry–Pérot laser diode. Opt. Exp. 18(17), 18077–18085 (2010). ADSCrossRefGoogle Scholar
  23. Mun, S.G., Moon, J.H., Lee, H.K., Kim, J.Y., Lee, ChH: A WDM-PON with a 40 Gb/s capacity based on wavelength-locked Fabry–Pérot laser diodes. Opt. Exp. 16(15), 11361–11368 (2008)ADSCrossRefGoogle Scholar
  24. Murakami, A., Kawashima, K., Atsuki, K.: Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection. IEEE J. Quantum Electron. 39(10), 1196–1204 (2003). ADSCrossRefGoogle Scholar
  25. Nguyen, Q.T., et al.: Using optical injection of Fabry–Pérot lasers for high-speed access in optical telecommunications. In: Semiconductor Lasers and Laser Dynamics IV, SPIE Photonics Europe, Proceedings, vol. 7720 (2010).
  26. Osinski, M., Buus, J.: Linewidth broadening factor in semiconductor laser—an overview. IEEE J. Quantum Electron. 23(1), 9–29 (1987). ADSCrossRefGoogle Scholar
  27. Ratkoceri, J., Batagelj, B.: Comparison of the frequency responses of free-running and injection-locked Fabry–Pérot laser diodes up to 10 GHz. In: 2017 Workshop on Fiber Optics in Access Network FOAN’2017 (2017)Google Scholar
  28. Razavi, B.: A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004). ADSCrossRefGoogle Scholar
  29. Šprem, M., Babić, D., Bosiljevac, M., Šipuš, Z.: Temperature dependence of injection-locked Fabry–Pérot laser emission in WDM-PON architectures. In: 2015 Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO’2015, pp. 74–78 (2015)Google Scholar
  30. Tartarini, G., Lena, A., Passaro, D., et al.: Harmonic and intermodulation distortion modeling in IM-DD multi-band radio over fiber links exploiting injection locked lasers. Opt. Quantum Electron. 38(9–11), 869–876 (2006). CrossRefGoogle Scholar
  31. Xiong, F., Zhong, W.D., Kim, H.: A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry–Pérot laser diodes. J. Lightw. Technol. 30(3), 355–361 (2012). ADSCrossRefGoogle Scholar
  32. Xu, Z., Wen, Y., Zhong, W., Chae, C., Cheng, X., Wang, Y., Lu, C., Shankar, J.: High-speed WDM-PON using CW injection-locked Fabry–Pérot laser diodes. Opt. Exp. 15(6), 2953–2962 (2007)ADSCrossRefGoogle Scholar
  33. Zhang, Z., Zhang, B., Ju, C., et al.: Bidirectional 50 Gb/s/k WDM-PON based on optical intensity modulation and direct detection. Opt. Quantum Electron. 48, 476 (2016). CrossRefGoogle Scholar
  34. Zhou, W., Chong, K.M., Guo, H.: Linewidth measurement of Littrow structure semiconductor laser with improved methods. Phys. Lett. A 372(23), 4327–4332 (2008)ADSCrossRefGoogle Scholar
  35. Zlitni, A.G.R., Krstić, M.M., Gvozdić, D.M.: Modulation response and bandwidth of injection-locked Fabry-Pérot laser diode. Phys. Scr. 2012, 014033 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radiation and Optics Laboratory, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.IPKO TelecommunicationPristinaRepublic of Kosovo

Personalised recommendations