Advertisement

Nonlinear planar optical waveguide sensors comprising metamaterial guiding films at terahertz frequencies

  • M. M. Abadla
  • H. M. Mousa
  • M. M. Shabat
Article
  • 45 Downloads

Abstract

In this paper, we propose a metamaterial film bounded by a nonlinear cover and a dielectric substrate as a THz wave sensor. The dispersion characteristics and magnetic field profiles have been derived, computed and analyzed. Confinement of the light waves was found to increase with both nonlinearity and frequency. We believe our results can be used to design novel tunable future sensors.

Keywords

Metamaterials Nonlinear magnetic materials Optical waveguide sensing 

References

  1. Abadla, M., Shabat, M., Jäger, D.: Mathematical simulation of nonlinear optical wave guided sensors. Proc. SPIE 5445, 324–327 (2003)ADSGoogle Scholar
  2. Abadla, M., Shabat, M., Jager, D.: Simulation of sensitivity characteristics in optical nonlinear wave guide sensors. Laser Phys. 14(9), 1–7 (2004a)Google Scholar
  3. Abadla, M., Shabat, M., Jager, D.: Characteristics of nonlinear waveguides sensors with metallic core films. Laser Phys. 14(12), 1524–1528 (2004b)Google Scholar
  4. Abadla, M., Taya, S., Shabat, M.: Four layer slab waveguide sensors supported with left handed materials. Sens. Lett. 9(5n), 1823–1829 (2011)CrossRefGoogle Scholar
  5. Ajith, R., Mathew, V.: Dispersion characterestics of surface Plasmon polariton modes in a metallic slab waveguide with nonlinear magnetic cladding. J. Appl. Phys. 114, 214311 (2013)ADSCrossRefGoogle Scholar
  6. Awasthi, S., Ojha, S.: Wide-angle, broadband plate polarizer with 1D photonic crystal. Prog. Electromagn. Res. PIER 88, 321–335 (2008)CrossRefGoogle Scholar
  7. Awasthi, S.K., et al.: Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma. Phys. Plasmas 25, 052103 (2018)ADSCrossRefGoogle Scholar
  8. Boardman, A., Shabat, M., Wallis, R.: Non-linear magneto dynamics waves on magnetic materials. Phys. Rev. B 41(1), 717–730 (1990)ADSCrossRefGoogle Scholar
  9. Boardman, A., Shabat, M., Wallis, R.: TE waves at an interface between linear gyro magnetic and nonlinear dielectric media. J. Phys. D Appl. Phys. 24, 1702–1707 (1991)ADSCrossRefGoogle Scholar
  10. Cai, W., Shalaev, V.: Optical Metamaterials. Springer, New York (2010)Google Scholar
  11. Cao, Q., Jahns, J.: Azimuthally polarized surface plasmons as effective terahertz waveguides. Opt. Express 13(2), 511–518 (2005)ADSCrossRefGoogle Scholar
  12. Degiron, A., Smith, D.: Nonlinear long-range plasmonic waveguides. Phys. Rev. A 82, 033812 (2010)ADSCrossRefGoogle Scholar
  13. Ghosh, S., Bhattacharyya, S., Kaiprath, Y., Srivastava, K.: Bandwidth- enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 115(10), 104503 (2014)ADSCrossRefGoogle Scholar
  14. Govind, D., Ramakrishna, S.: Design of highly absorbing metamaterials for Infrared frequencies. Opt. Express 20(16), 17503–17508 (2012)ADSCrossRefGoogle Scholar
  15. Hao, J., Wang, J., Liu, X., et al.: High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010)ADSCrossRefGoogle Scholar
  16. Horváth, R., Fricsovszky, G., Papp, E.: Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition. Biosens. Bioelectron. 18, 415–428 (2003)CrossRefGoogle Scholar
  17. Huang, C., Liu, H., Zhang, X., Lee, C.: Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces. Opt. Express 21(5), 6519–6525 (2013)ADSCrossRefGoogle Scholar
  18. Isaac, T.: Tunable plasmonic structures for terahertz Frequencies (Ph.D. Thesis), University of Exeter, UK (2009)Google Scholar
  19. Klainer, S., Coulter, S., Pollina, R., Saini, D.: Advances in miniature optical waveguide sensors. Sens. Actuators B 38–39, 176–182 (1997)CrossRefGoogle Scholar
  20. Kunz, R.: Miniature integrated optical modules for chemical and biochemical sensing. Sens. Acuators B 38–39, 13–28 (1997)CrossRefGoogle Scholar
  21. Lin, Q., Painter, O., Agrawal, G.: Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express 15, 16604–16644 (2007)ADSCrossRefGoogle Scholar
  22. Liu, X., Padilla, W.: Dynamic manipulation of infrared radiation with MEMS metamaterials. Adv. Opt. Mater. 1(8), 559–562 (2013)CrossRefGoogle Scholar
  23. Mends, R., Grischkowsky, D.: Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt. Lett. 26, 846–848 (2001)ADSCrossRefGoogle Scholar
  24. Mittleman, D.M.: Sensing with Terahertz Radiation. Springer, Heidelberg (2002)Google Scholar
  25. Mousa, H.: Nonlinear electromagnetic TM surface waves in magnetic superlattices (LANS) film. J. Islamic Univ. 15, 147–155 (2007)Google Scholar
  26. Mousa, H., Shabat, M.: Nonlinear TE surface in a left-handed material and superlattices wave-guide structures. Int. J. Modern Phys. B 21(6), 895–906 (2007)ADSCrossRefGoogle Scholar
  27. Mousa, H., Shabat, M.: TM polarized terahertz waves in left-handed cylindrical materials. Int. J. Microw. Opt. Technol. 10(2), 89–94 (2015a)Google Scholar
  28. Mousa, H., Shabat, M.: Simulation of asymmetry metamaterial waveguide absorber (TE&TM). Energy Procedia 74, 597–607 (2015b)CrossRefGoogle Scholar
  29. Mousa, H., Abadla, M., Shabat, M.: Characteristics of surface waves in LHM ferrite semiconductor waveguides. Funct. Mater. 18(2), 230–236 (2011)Google Scholar
  30. Parriaux, O., Veldhuis, G.: Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors. J. Lightwave Technol. 16, 573–582 (1998)ADSCrossRefGoogle Scholar
  31. Parriaux, O., et al.: Normalized optimization of second harmonic effects in slab waveguides. Opt. Commun. 152, 161–167 (1998)ADSCrossRefGoogle Scholar
  32. Pendry, J., Schurig, D., Smith, D.: Controlling electromagnetic fields. Science 312, 1777–1779 (2006)ADSMathSciNetCrossRefGoogle Scholar
  33. Pitchappa, P., Pei-Ho, C., Kropelnicki, P., et al.: Switchable near infrared complementary metamaterial absorber. Appl. Phys. Lett. 104, 201114 (2014)ADSCrossRefGoogle Scholar
  34. Prieto, F., et al.: Design and analysis of silicon antiresonant reflecting optical waveguides for evanscent field sensor. J. Lightwave Tech 18, 966–972 (2000)ADSCrossRefGoogle Scholar
  35. Quing, D., Chen, X., Itoh, K., Murabayashi, M.: A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method A theoretical evaluation of the absorption coefficient of the optical waveguide chemical or biological sensors by group index method. J. Lightwave Technol. 14, 1907–1917 (1996)ADSCrossRefGoogle Scholar
  36. Shabat, M., Khalil, H., Taya, S., Abadla, M.: Analysis of the sensitivity of self-focused nonlinear optical evanescent waveguide sensors. Int. J. Optomechatron. 1, 284–296 (2007)CrossRefGoogle Scholar
  37. Smith, P.R., Auston, D.H., Nuss, M.C.: Subpicosecond photoconducting dipole antennas. IEEE. J. Quant. Electron. 24, 255–260 (1988)ADSCrossRefGoogle Scholar
  38. Srivastava, S.K., Ojha, S.P.: Enhancement of omnidirectional reflection band in one-dimensional photonic crystals with left-handed materials. Prog. Electromagn. Res. PIER 68, 91–111 (2007)CrossRefGoogle Scholar
  39. Taya, S., El-Farram, E., Abadla, M.: symmetric multilayer slab wg structure with a negative index material: TM case. Optik 123, 2264–2268 (2012)ADSCrossRefGoogle Scholar
  40. Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B 6(2), 209–220 (1989)ADSCrossRefGoogle Scholar
  41. Wang, X., Zhai, X., Wang, G., Huang, W., Wang, L.: Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 7(1), 4600108 (2015)Google Scholar
  42. Zare, Z., Gharaati, A.: Investigation of band gap width in ternary 1D photonic crystal with left-handed layer. Acta Physica Pol. 125(1), 36–38 (2014)CrossRefGoogle Scholar
  43. Zou, T., et al.: Terahertz Spectra of Ninhydrin and Indane-1,2,3-Trione. J. Infrared Millim. Terahertz Waves 38(7), 896–908 (2017)CrossRefGoogle Scholar
  44. Zourob, M., et al.: Bacteria detection using disposable optical leaky waveguide sensors. Biosens. Bioelectron. 21, 293–302 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentAl-Aqsa UniversityGazaPalestine
  2. 2.Physics DepartmentAl Azhar UniversityGazaPalestine
  3. 3.Physics DepartmentIslamic UniversityGazaPalestine

Personalised recommendations