Advertisement

Vortex dynamics of counterpropagting laser beams in photorefractive materials

  • Mihailo Čubrović
  • Milan Petrović
Article
  • 46 Downloads
Part of the following topical collections:
  1. Focus on Optics and Bio-photonics, Photonica 2017

Abstract

We study vortex patterns of counterpropagating laser beams in a photorefractive crystal, with or without the background photonic lattice. The vortices are effectively planar and have two “flavors” because there are two opposite directions of beam propagation. In a certain parameter range, the vortices form stable equilibrium configurations which we study using the methods of statistical field theory and generalize the Berezinsky–Kosterlitz–Thouless transition of the XY model to the “two-flavor” case. In the nonequilibrium regime, the patterns exhibit an Andronov–Hopf bifurcation which may lead to oscillations (limit cycle), chaos or decay to zero intensity due to radiation losses. We show how to identify various pathways toward instability from intensity patterns, i.e. from experiment.

Keywords

Vortex BKT transition Photorefractive optics Statistical field theory 

Notes

Acknowledgements

Work at the Institute of Physics is funded by Ministry of Education, Science and Technological Development, under Grants Nos. OI171033 and OI171017. M.P. is also supported by the NPRP 8-028-1-001 project of the Qatar National Research Fund (a member of the Qatar Foundation).

References

  1. Alexander, T.J., Desyatnikov, A.S., Kivshar, Y.S.: Multivortex solitons in triangular photonic lattices. Opt. Lett. 32, 1293–1295 (2007)ADSCrossRefGoogle Scholar
  2. Anderson, P.W.: Two new vortex liquids. Nat. Phys. 3, 160–162 (2007)CrossRefGoogle Scholar
  3. Antenucci, F., Conti, C., Crisanti, A., Leuzzi, L.: General phase diagram of multimodal ordered and disordered lasers in closed and open cavities. Phys. Rev. Lett. 114, 043901 (2015a)ADSCrossRefGoogle Scholar
  4. Antenucci, F., Crisanti, A., Leuzzi, L.: Complex spherical \(2+4\) spin glass: a model for nonlinear optics in random media. Phys. Rev. A 91, 053816 (2015b)ADSCrossRefGoogle Scholar
  5. Arnol’d, V.I., Afraymovich, V.S., Il’yashenko, Y.S., Shil’nikov, L.P.: Bifurcation Theory and Catastrophe Theory. Springer, Berlin (1994)Google Scholar
  6. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose–Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 5–50 (2015)Google Scholar
  7. Berezinsky, V.L.: Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. 1. Classical systems. Sov. Phys. JETP 32, 493–500 (1971)ADSMathSciNetGoogle Scholar
  8. Cardy, J.L., Ostlund, S.: Random symmetry-breaking fields and the XY model. Phys. Rev. B 25, 6899–6909 (1982)ADSCrossRefGoogle Scholar
  9. Castellana, M., Parisi, G.: Non-petturbative effects in spin glasses. Nat. Sci. Rep. 5, 8697 (2015). arXiv:1503.02103 [cond-mat.dis-nn]ADSCrossRefGoogle Scholar
  10. Cohen, O., Lan, S., Harmon, T., Giordmaine, J.A., Segev, M.: Spatial vector solitons consisting of counterpropagating fields. Opt. Lett. 27, 2013–2015 (2002)ADSCrossRefGoogle Scholar
  11. Cross, M., Hohenberg, P.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)ADSCrossRefGoogle Scholar
  12. Čubrović, M., Petrović, M.: Quantum criticality in photorefractive optics: vortices in laser beams and antiferromagnets. Phys. Rev. A 96, 053824 (2017). arXiv:1701.03451 [physics.optics]ADSCrossRefGoogle Scholar
  13. Denz, C., Schwab, M., Weilnau, C.: Transverse Pattern Formation in Photorefractive Optics. Springer, Berlin (2003)CrossRefGoogle Scholar
  14. Dreischuh, E., Chervenkov, S., Neshev, D., Paulus, G.G., Walther, H.: Generation of lattice structures of optical vortices. J. Opt. Soc. Am. B 19, 550–556 (2002)ADSCrossRefGoogle Scholar
  15. Fetter, A.L.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647–691 (2009)ADSCrossRefGoogle Scholar
  16. Fleischer, J.W., Bartal, G., Cohen, O., Manela, O., Segev, M., Hudock, J., Christodoulides, D.N.: Observation of vortex-ring “discrete” solitons in 2D photonic lattices. Phys. Rev. Lett. 92, 123904 (2004)ADSCrossRefGoogle Scholar
  17. Ghofraniha, N.: Experimental evidence of replica symmetry breaking in random lasers. Nat. Commun. 6, 6058 (2015). arxiv.org/abs/1407.5428 [cond-mat.dis-nn]CrossRefGoogle Scholar
  18. Jović, D.M., Petrović, M.S., Belić, M.R.: Counterpropagating pattern dynamics: from narrow to broad beams. Opt. Commun. 281, 2291–2300 (2008)ADSCrossRefGoogle Scholar
  19. Kosterlitz, J., Thouless, D.: The Kosterlitz–Thouless phase in a hierarchical model. J. Phys. C 6, 1181–1203 (1973)ADSCrossRefGoogle Scholar
  20. Ma, X., Driben, R., Malomed, B., Meoer, T., Schumacher, S.: Two-dimensional symbiotic solitons and vortices in binary condensates with attractive cross-species interaction. Nat. Sci. Rep. 6, 34847 (2016). arXiv:1606.08579 [physics.optics]ADSCrossRefGoogle Scholar
  21. Malomed, B., Torner, L., Wise, F., Mihalache, D.: On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics. J. Phys. B: At. Mol. Opt. Phys. 49, 170502 (2016)ADSCrossRefGoogle Scholar
  22. Neshev, D.N., Alexander, T.J., Ostrovskaya, E.A., Kivshar, Y.S.: Observation of discrete vortex solitons in opticlly induced photonic lattices. Phys. Rev. Lett 92, 123903 (2004)ADSCrossRefGoogle Scholar
  23. Perret, A., Ristivojevic, Z., Le Doussal, P., Schehr, G., Wiese, K.: Super-rough glassy phase of the random field XY model in two dimensions. Phys. Rev. Lett. 109, 157205 (2012). arXiv:1204.5685 [cond-mat.dis-nn]ADSCrossRefGoogle Scholar
  24. Petrović, M.S., Belić, M.R., Denz, C., Kivshar, YuS: Counterpropagating optical beams and solitons. Lasers Photonic Rev. 5, 214–233 (2011). arXiv:0910.4700 [physics.optics]
  25. Petrović, M., Jović, D., Belić, M., Schröder, J., Jander, P., Denz, C.: Two dimensional counterpropagating spatial solitons in photorefractive crystals. Phys. Rev. Lett 95, 053901 (2005)ADSCrossRefGoogle Scholar
  26. Rabinovich, M.I., Ezersky, A.B., Weidman, P.D.: The Dynamics of Patterns. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  27. Rechtsman, M.C., Zeuner, J.M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., Nolte, S., Segev, M., Szameit, A.: Photonic Floquet topological insulators. Nature 496, 196–200 (2013). arXiv:1212.3146 [physics]ADSCrossRefGoogle Scholar
  28. Sandfuchs, O., Kaiser, F., Belić, M.R.: Self-organization and Fourier selection of optical patterns in a nonlinear photorefractive feedback system. Phys. Rev. A 64, 063809 (2001)ADSCrossRefGoogle Scholar
  29. Silaev, M., Babev, E.: Microscopic derivation of two-component Ginzburg–Landau model and conditions of ots applicability in two-band systems. Phys. Rev. B 85, 134514 (2012). arXiv:1110.1593 [cond-mat.supr-con]ADSCrossRefGoogle Scholar
  30. Terhalle, B., Richter, T., Desyatnikov, A.S., Neshev, D.N., Krolikowski, W., Kaiser, F., Denz, C., Kivshar, Y.S.: Observation of multivortex solitons in photonic lattices. Phys. Rev. Lett 101, 013903 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Scientific Computing Laboratory, Institute of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of PhysicsBelgradeSerbia
  3. 3.Texas A&M University at QatarDohaQatar

Personalised recommendations