Advertisement

Investigation of Euler spiral nanoantenna and its application in absorption enhancement of thin film solar cell

  • Abhishek Pahuja
  • Manoj Singh Parihar
  • V. Dinesh Kumar
Article
  • 36 Downloads

Abstract

A theoretical study on nanoantenna and its application in enhancing the performance of the thin film solar cell (TFSC) is presented. In this work, a novel design of nanoantenna i.e. Euler spiral nanoantenna (ESNA) is introduced, which has evolved after bending the conventional dipole nanoantenna in the manner of Euler spiral. The bending is performed up to an optimum length so that the antenna can equally respond to the two orthogonally polarized waves. Then the proposed nanoantenna in turnstile manner is examined for the intended application of enhancing the absorption in TFSCs. The antenna is placed on the absorber layer (Si amorphous) of the TFSC with a coating of Zinc Oxide. The simulation results show that the proposed ESNA can significantly increase the absorption in the absorber layer of the TFSC. The performance in terms of absorption and quantum efficiency of the solar cell incorporated with ESNA has been studied. ESNA confines the electric field in a larger area which results in absorption increase. The simulation results show that proposed ESNA can enhance the absorption up to 97.6% in the absorber layer and the photocurrent is enhanced by a factor of 1.39. To the best of our knowledge, this is the first study on Euler spiral nanoantenna and so as in its application with solar cells.

Keywords

Plasmonics Dipole nanoantenna (DNA) Polarization Electric field confinement Thin film solar cell (TFSC) Electric field enhancement 

References

  1. ASTM Reference solar spectral irradiance: Air mass 1.5 spectra. http://rredc.nrel.gov/solar/spectra/am1.5
  2. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADSCrossRefGoogle Scholar
  3. Brockett, T.J., Rajagopalan, H., Laghumavarapu, R.B., Hufakker, D., Rahmat-Samii, Y.: Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting. IEEE Trans. Antennas Propag. 61(4), 1518–1527 (2013)ADSCrossRefGoogle Scholar
  4. Chriki, R., Yanai, A., Shappir, J., Levy, U.: Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure. Opt. Exp. 21, A382–A391 (2013)ADSCrossRefGoogle Scholar
  5. CST Studio Suite 2017: https://www.cst.com/
  6. Di Vece, M., et al.: Plasmonic nano-antenna a-Si: H solar cell. Opt. Exp. 20, 27327–27336 (2012)ADSCrossRefGoogle Scholar
  7. Dinesh Kumar, V., Asakawa, K.: Investigation of slot nanoantenna in optical frequency range. Photonics Nanostruct. Fundam. Appl. 7, 161–168 (2009)ADSCrossRefGoogle Scholar
  8. Dongaonkar, S., Servaites, J.D., et al.: Universality of non-Ohmic shunt leakage in thin-film solar cells. J. Appl. Phys. 108, 1–10 (2010)CrossRefGoogle Scholar
  9. Farahani, J.N., et al.: Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 1–4 (2005)CrossRefGoogle Scholar
  10. Green, M.A., Pillai, S.: Harnessing plasmonics for solar cells. Nat. Photonics 6, 130–132 (2012)ADSCrossRefGoogle Scholar
  11. Johnson, P.B., Christy, R.W.: Optical constant of the noble metals. Phys. Rev. Lett. 15, 4370–4379 (1972)Google Scholar
  12. Konnen, G.P.: Polarized Light in Nature. Cambridge University Press, Cambridge (1985)Google Scholar
  13. Krenn, J.R., et al.: Non diffraction-limited light transport by gold nanowires. Europhys. Lett. 60, 663–669 (2002)ADSCrossRefGoogle Scholar
  14. Law, S., et al.: All-semiconductor plasmonic nanoantennas for infrared sensing. Nano Letters 13(9), 4569–4574 (2013)ADSCrossRefGoogle Scholar
  15. Maier, S.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)CrossRefGoogle Scholar
  16. Muhlschlegel, P., et al.: Resonant optical antennas. Science 308, 1607–1609 (2005)ADSCrossRefGoogle Scholar
  17. Pahuja, A., Parihar, M.S., Dinesh Kumar, V.: Performance enhancement of thin film solar cell based on extra ordinary transmission. Superlattices Microstruct. 1, 81–87 (2018).  https://doi.org/10.1016/j.spmi.2018.02.017 ADSCrossRefGoogle Scholar
  18. Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1986)Google Scholar
  19. Rao, J., Varlamov, S.: Light trapping in thin film polycrystalline silicon solar cell using diffractive gratings. Energy Procedia 33, 129–136 (2013)CrossRefGoogle Scholar
  20. Sundaramurthy, A., et al.: Towards nanometer-scale optical photolithography: utilizing the near field of bowtie optical nanoantennas. Nano Letters 6, 355–360 (2006)ADSCrossRefGoogle Scholar
  21. Taghian, F., Ahmadi, V., Yousefi, L.: Enhanced thin solar cells using optical nano-antenna induced hybrid plasmonic travelling-wave. IEEE J. Lightw. Technol. 34, 1267–1273 (2016)ADSCrossRefGoogle Scholar
  22. Van Hulst, N.F.: Light in chains. Nature 448, 141–142 (2007)ADSCrossRefGoogle Scholar
  23. Vandenbosch, G.A.E., Ma, Z.: Upper bounds for the solar energy harvesting efficiency of nanoantennas. Nano Energy 1, 494–502 (2012)CrossRefGoogle Scholar
  24. Yu, Y., et al.: Dielectric core–shell optical antennas for strong solar absorption enhancement. Nano Letters 12, 3674–3681 (2012)ADSCrossRefGoogle Scholar
  25. Yu-Yang, Y., et al.: Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays. Chin. Phys. B 24, 1–6 (2015)Google Scholar
  26. Zhu, L.-H., et al.: Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal. Opt. Exp. 21, A313–A323 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringPDPM Indian Institute of Information Technology, Design and ManufacturingJabalpurIndia

Personalised recommendations