Advertisement

Tunable microwave photonics filter with dual pass-band based on PM-FBG and PS-FBG

  • Tao Lin
  • Shanghong Zhao
  • Yufu Yin
  • Zihang Zhu
  • Xuan Li
  • Wei Jiang
  • Dong Liang
  • Kun Zhang
  • Qiurong Zheng
Article
  • 67 Downloads

Abstract

In this paper, a dual pass-band microwave photonics filter with simple, commercial structure is proposed and demonstrated. The key devices are the specially designed polarization maintaining fiber Bragg grating and the phase shift fiber Bragg grating. They are employed to extract out two orthogonally polarized sidebands and remove the undesired sideband, respectively. The simulation results show that without any extra operations or electrical processing, the dual pass-band can be achieved with the two central frequencies of 3.5 GHz and 8 GHz when the frequency spacing between the two orthogonally polarized sidebands is 12 GHz, their 3-dB bandwidth are about 500 MHz. The central frequencies of the two pass-bands can be simply tuned by adjusting the frequency spacing in a range of 4 GHz. In addition, the spurious free dynamic ranges for the two pass-bands are 75.71 dB Hz2/3 and 70.17 dB Hz2/3 respectively. Finally, a brief experiment is also carried out to demonstrate the feasibility.

Keywords

Microwave photonics filter Polarization maintain fiber Bragg grating Phase shift fiber Bragg grating Spurious free dynamic range 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 61571461), (No. 61231012) and (No. 61401502), Natural Science Foundation of Shaanxi Province (No. 2016JQ6008).

References

  1. Capmany, J., Ortega, B., Pastor, D.: A tutorial on microwave photonic filters. J. Lightw. Technol. 24(1), 201–229 (2006)ADSCrossRefGoogle Scholar
  2. Choudhary, A., Aryanfar, I., Shahnia, S., Morrison, B., Vu, K., Madden, S., et al.: Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. Opt. Lett. 41(3), 436–439 (2016)ADSCrossRefGoogle Scholar
  3. Erdogan, T.: Fiber grating spectra. J. Lightw. Technol. 15(8), 1277–1294 (1997)ADSCrossRefGoogle Scholar
  4. Han, X., Xu, E., Liu, W., Yao, J.: Tunable dual-passband microwave photonic filter using orthogonal polarization modulation. IEEE Photonics Technol. Lett. 27(20), 2209–2212 (2015)ADSCrossRefGoogle Scholar
  5. Han, X., Xu, E., Yao, J.: Tunable single bandpass microwave photonic filter with an improved dynamic range. IEEE Photonics Technol. Lett. 28(1), 11–14 (2016)ADSCrossRefGoogle Scholar
  6. Li, Z., Li, M., Chi, H., Zhang, X., Yao, J.: Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization maintaining fiber Bragg grating. Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011)CrossRefGoogle Scholar
  7. Liu, L., He, M., Dong, J.: Compact continuously tunable microwave photonic filters based on cascaded silicon microring resonators. Opt. Commun. 363, 128–133 (2016)ADSCrossRefGoogle Scholar
  8. Song, M., Torres-Company, V., Metcalf, A.J., Weiner, A.M.: Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping. Opt. Lett. 37(5), 845–847 (2012)ADSCrossRefGoogle Scholar
  9. Urick Jr., V.J., Mckinney, J.D., Williams, K.J.: Fundamental of Microwave Photonics. Wiley, Hoboken (2015)CrossRefGoogle Scholar
  10. Vidal, B., Mengual, T., Ibanez-Lopez, C., Marti, J.: WDM photonic microwave filter with variable cosine windowing based on a DGD module. IEEE Photonics Technol. Lett. 18(21), 2272–2274 (2006)ADSCrossRefGoogle Scholar
  11. Wang, J., Zeng, F., Yao, J.: All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion. IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005)ADSCrossRefGoogle Scholar
  12. Xu, E., Zhang, X., Zhou, L., Zhang, Y., Yu, Y., Li, X., Huang, D.: Ultrahigh-microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Opt. Lett. 35(8), 1242–1244 (2010)ADSCrossRefGoogle Scholar
  13. Yao, J.: Microwave photonics. J. Lightw. Technol. 27(3), 314–335 (2009)ADSCrossRefGoogle Scholar
  14. Yi, X., Minasian, R.A.: Microwave photonic filter with single band-pass response. Electron. Lett. 45(7), 362–363 (2009)CrossRefGoogle Scholar
  15. Yi, L., Wei, W., Jaouën, Y., Shi, M., Han, B., Morvan, M., Hu, W.: Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering. J. Lightw. Technol. 34(2), 669–675 (2016)ADSCrossRefGoogle Scholar
  16. Zhang, W., Minasian, R.A.: Widely tunable single-passband microwave photonic filter based on stimulated brillouin scattering. IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011)ADSCrossRefGoogle Scholar
  17. Zhang, L., Zhao, H., Wang, H., Shao, S., Tian, W., Ding, J., Fu, X., Yang, L.: Cascading second-order microring resonators for a box-like filter response. J. Lightw. Technol. 35(24), 5347–5360 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tao Lin
    • 1
    • 2
  • Shanghong Zhao
    • 1
  • Yufu Yin
    • 1
  • Zihang Zhu
    • 1
  • Xuan Li
    • 1
  • Wei Jiang
    • 2
  • Dong Liang
    • 2
  • Kun Zhang
    • 1
  • Qiurong Zheng
    • 1
  1. 1.College of Information and NavigationAir Force Engineering UniversityXi’anChina
  2. 2.National Key Laboratory of Science and Technology on Space MicrowaveXi’anChina

Personalised recommendations