Advertisement

Adiabatic transfer of surface plasmons in non-Hermitian graphene waveguides

  • Shaolin Ke
  • Dong Zhao
  • Qingjie Liu
  • Weiwei Liu
Article
  • 92 Downloads

Abstract

We investigate the energy transfer of surface plasmon polaritons (SPPs) based on adiabatic passage in a non-Hermitian waveguide composed of three coupled graphene sheets. The SPPs can completely transfer between two outer waveguides via the adiabatic dark mode as the waveguides are lossless and the coupling length is long enough. However, the loss of graphene can lead to breakdown of adiabatic transfer schemes. By utilizing the coupled mode theory, we propose three approaches to cancel the nonadiabatic coupling by adding certain gain or loss in respect waveguides. Moreover, the coupling length of waveguide is remarkably decreased. The study may find interesting application in optical switches on a deep-subwavelength scale.

Keywords

Waveguides Subwavelength structures Plasmonics 

Notes

Acknowledgements

Program for Distinguished Middle-aged and Young Innovative Research Team in Higher Education of Hubei, China (T201806), the Campus Science Foundation Research Project of Wuhan Institute of Technology (K201821).

References

  1. Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5), 3677–3694 (2012)CrossRefGoogle Scholar
  2. Boubanga-Tombet, S., Chan, S., Watanabe, T., Satou, A., Ryzhii, V., Otsuji, T.: Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Phys. Rev. B 85(3), 035443 (2012)ADSCrossRefGoogle Scholar
  3. Chen, P.Y., Jung, J.: PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces. Phys. Rev. Appl. 5(6), 064018 (2016)ADSCrossRefGoogle Scholar
  4. Chen, Y., Zhou, Y., Li, Y., Li, M., Lan, P., Lu, P.: Rabi oscillation in few-photon double ionization through doubly excited states. Phys. Rev. A 97(1), 013428 (2018)ADSCrossRefGoogle Scholar
  5. De Leon, I., Berini, P.: Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photon. 4(6), 382–387 (2010)ADSCrossRefGoogle Scholar
  6. Deng, H., Ye, F., Malomed, B.A., Chen, X., Panoiu, N.C.: Optically and electrically tunable Dirac points and Zitterbewegung in graphene-based photonic superlattices. Phys. Rev. B 91, 201402(R) (2015)ADSCrossRefGoogle Scholar
  7. Deng, H., Chen, X., Malomed, B.A., Panoiu, N.C., Ye, F.: Tunability and robustness of Dirac points of photonic nanostructures. IEEE J. Sel. Top. Quant. Electron. 22(5), 5000509 (2016)CrossRefGoogle Scholar
  8. Dreisow, F., Ornigotti, M., Szameit, A., Heinrich, M., Keil, R., Nolte, S., Tünnermann, A., Longhi, S.: Polychromatic beam splitting by fractional stimulated Raman adiabatic passage. App. Phys. Lett. 95(26), 261102 (2009)ADSCrossRefGoogle Scholar
  9. Gan, F., Sun, C., Wang, Y., Li, H., Gong, Q., Chen, J.: Multimode metallic double-strip waveguides for polarization manipulation. Adv. Mater. Technol. 2(4), 1600248 (2017)CrossRefGoogle Scholar
  10. Golshani, M., Weimann, S., Jafari, K., Khazaei Nezhad, M., Langari, A., Bahrampour, A.R., Eichelkraut, T., Mahdavi, S.M., Szameit, A.: Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. 113, 123903 (2014)ADSCrossRefGoogle Scholar
  11. Graefe, E., Mailybaev, A.A., Moiseyev, N.: Breakdown of adiabatic transfer of light in waveguides in the presence of absorption. Phys. Rev. A 88, 033842 (2013)ADSCrossRefGoogle Scholar
  12. Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4(2), 83–91 (2010)ADSCrossRefGoogle Scholar
  13. He, M., Zhou, Y., Li, Y., Li, M., Lu, P.: Revealing the target structure information encoded in strong-field photoelectron hologram. Opt. Quant. Electron. 49(6), 232 (2017)CrossRefGoogle Scholar
  14. He, L., Zhang, Q., Lan, P., Cao, W., Zhu, X., Zhai, C., Wang, F., Shi, W., Li, M., Bian, X., Lu, P., Bandrauk, A.D.: Monitoring ultrafast vibrational dynamics of isotopic molecules with frequency modulation of high-order harmonics. Nat. Commun. 9, 1108 (2018a)ADSCrossRefGoogle Scholar
  15. He, M., Li, Y., Zhou, Y., Li, M., Cao, W., Lu, P.: Direct visualization of valence electron motion using strong-field photoelectron holography. Phys. Rev. Lett. 120(13), 133204 (2018b)ADSCrossRefGoogle Scholar
  16. He, L., Lan, P., Le, A.T., Wang, B., Wang, B., Zhu, X., Lu, P., Lin, C.D.: Real-time observation of molecular spinning with angular high-harmonic spectroscopy. Phys. Rev. Lett. 121, 163201 (2018c)ADSCrossRefGoogle Scholar
  17. Hong, Z., Rezvani, S., Zhang, Q.: Octave-spanning energy-scalable CEP-stabilized pulses from a dual-chirped noncollinear optical parametric amplifier. Opt. Quant. Electron. 49, 392 (2017)CrossRefGoogle Scholar
  18. Hong, Z., Zhang, Q., Ali Rezvani, S., Lan, P., Lu, P.: Tunable few-cycle pulses from a dual-chirped optical parametric amplifier pumped by broadband laser. Opt. Laser Technol. 98, 169–177 (2018)ADSCrossRefGoogle Scholar
  19. Huang, Z., Wang, L., Sun, B., He, M., Liu, J., Li, H., Zhai, X.: A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface. J. Opt. 16(105004), 1–7 (2014)Google Scholar
  20. Huang, H., Ke, S., Wang, B., Long, H., Wang, K., Lu, P.: Numerical study on plasmonic absorption enhancement by a rippled graphene sheet. J. Lightwave Technol. 35(2), 320–324 (2017)ADSCrossRefGoogle Scholar
  21. Ibáñez, S., Muga, J.G.: Adiabaticity condition for non-Hermitian Hamiltonians. Phys. Rev. A 89(3), 033403 (2014)ADSCrossRefGoogle Scholar
  22. Ke, S., Wang, B., Qin, C., Long, H., Wang, K., Lu, P.: Exceptional points and asymmetric mode switching in plasmonic waveguides. J. Lightwave Technol. 34(22), 5258–5262 (2016)ADSCrossRefGoogle Scholar
  23. Ke, S., Wang, B., Long, H., Wang, K., Lu, P.: Topological mode switching in a graphene doublet with exceptional points. Opt. Quant. Electron. 49, 224 (2017)CrossRefGoogle Scholar
  24. Ke, S., Zhao, D., Liu, Q., Wu, S., Wang, B., Lu, P.: Optical imaginary directional couplers. J. Lightwave Technol. 36(12), 2510–2516 (2018a)ADSCrossRefGoogle Scholar
  25. Ke, S., Liu, J., Liu, Q., Zhao, D., Liu, W.: Strong absorption near exceptional points in plasmonic waveguide arrays. Opt. Quant. Electron. 50, 318 (2018b)CrossRefGoogle Scholar
  26. Ke, S., Liu, Q., Zhao, D., Liu, W.: Spectral discrete diffraction with non-Hermitian coupling. J. Opt. Soc. Am. B 35(10), 2387 (2018c)ADSCrossRefGoogle Scholar
  27. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M.: Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7(6), 363–368 (2012)ADSCrossRefGoogle Scholar
  28. Kou, Y., Ye, F., Chen, X.: Multiband Vector Plasmonic Lattice Solitons. Opt. Lett. 38(8), 1271–1273 (2013)ADSCrossRefGoogle Scholar
  29. Lan, P., Ruhmann, M., He, L., Zhai, C., Wang, F., Zhu, X., Zhang, Q., Zhou, Y., Li, M., Lein, M., Lu, P.: Attosecond probing of nuclear dynamics with trajectory-resolved high-harmonic spectroscopy. Phys. Rev. Lett. 119(3), 033201 (2017)ADSCrossRefGoogle Scholar
  30. Li, T., Luo, L., Hupalo, M., Zhang, J., Tringides, M.C., Schmalian, J., Wang, J.: Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. Phys. Rev. Lett. 108(16), 167401 (2012)ADSCrossRefGoogle Scholar
  31. Li, Y., Guo, X., Xu, C., Yang, J., Jiang, X., Wang, M.: Coupled mode theory under the parity-time symmetry frame. J. Lightwave Technol. 31(15), 2477–2481 (2013)ADSCrossRefGoogle Scholar
  32. Li, G., Chen, G., Peng, P., Qi, W.: Non-Hermitian shortcut to adiabaticity of two- and three-level systems with gain and loss. Eur. Phys. J. D 71(14), 1–10 (2017)Google Scholar
  33. Li, L., Lan, P., He, L., Zhu, X., Chen, J., Lu, P.: Scaling Law of High Harmonic Generation in the Framework of Photon Channels. Phys. Rev. Lett. 120(22), 223203 (2018)ADSCrossRefGoogle Scholar
  34. Lin, X., Li, R., Gao, F., Li, E., Zhang, X., Zhang, B., Chen, H.: Loss induced amplification of graphene plasmons. Opt. Lett. 41(4), 681–684 (2016a)ADSCrossRefGoogle Scholar
  35. Lin, X., Rivera, N., López, J.J., Kaminer, I., Chen, H., Soljačić, M.: Tailoring the energy distribution and loss of 2D plasmons. New J. Phys. 18(10), 105007 (2016b)ADSCrossRefGoogle Scholar
  36. Liu, Q., Ke, S., Liu, W.: Mode conversion and absorption in an optical waveguide under cascaded complex modulations. Opt. and Quant. Electron. 50, 356 (2018a)CrossRefGoogle Scholar
  37. Liu, W., Li, X., Song, Y., Zhang, C., Han, X., Long, H., Wang, B., Wang, K., Lu, P.: Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure. Adv. Funct. Mater. 28(26), 1707550 (2018b)CrossRefGoogle Scholar
  38. Liu, K., Qin, M., Li, Q., Liao, Q.: Transition from strong-field sequential to nonsequential double ionization at near-infrared wavelengths and low intensities. Opt. Quantum. Electron. 50(10), 364 (2018c)CrossRefGoogle Scholar
  39. Ma, X., Zhou, Y., Li, N., Li, M., Lu, P.: Attosecond control of correlated electron dynamics in strong-field nonsequential double ionization by parallel two-color pulses. Opt. Laser Technol. 108, 235–240 (2018)ADSCrossRefGoogle Scholar
  40. Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)ADSCrossRefGoogle Scholar
  41. Milburn, T.J., Doppler, J., Holmes, C.A., Portolan, S., Rotter, S., Rabl, P.: General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A 92(5), 052124 (2015)ADSCrossRefGoogle Scholar
  42. Mrejen, M., Suchowski, H., Hatakeyama, T., Wu, C., Feng, L., O’Brien, K., Wang, Y., Zhang, X.: Adiabatic elimination-based coupling control in densely packed subwavelength waveguides. Nat. Commun. 6, 7565 (2015)ADSCrossRefGoogle Scholar
  43. Ni, G.X., Wang, L., Goldflam, M.D., Wagner, M., Fe, Z., McLeo, A.S., Liu, M.K., Keilman, F., Özyilmaz, B., Castro Neto, A.H., Hone, J., Fogler, M.M., Basov, D.N.: Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016)ADSCrossRefGoogle Scholar
  44. Paspalakis, E.: Adiabatic three-waveguide directional coupler. Opt. Commun. 258, 30–34 (2006)ADSCrossRefGoogle Scholar
  45. Qin, C., Wang, B., Long, H., Wang, K., Lu, P.: Nonreciprocal phase shift and mode modulation in dynamic graphene waveguides. J. Lightwave Technol. 34(16), 3877–3883 (2016)Google Scholar
  46. Qin, C., Zhou, F., Peng, Y., Sounas, D., Zhu, X., Wang, B., Dong, J., Zhang, X., Alù, A., Lu, P.: Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials. Phys. Rev. Lett. 120, 133901 (2018)ADSCrossRefGoogle Scholar
  47. Ryzhii, V., Ryzhii, M., Mitin, V., Otsuji, T.: Toward the creation of terahertz graphene injection laser. J. Appl. Phys. 110(9), 094503 (2011)ADSCrossRefGoogle Scholar
  48. Sharaf, R., Dehghani, M., Ramezani, H.: Effect of non-Hermiticity on adiabatic elimination in coupled waveguides. Phys. Rev. A 97, 013854 (2018)ADSCrossRefGoogle Scholar
  49. Sounas, D.L., Alù, A.: Non-reciprocal photonics based on time modulation. Nat. Photonics 11, 774–783 (2017)ADSCrossRefGoogle Scholar
  50. Sun, C., Rong, K., Wang, Y., Li, H., Gong, Q., Chen, J.: Plasmonic ridge waveguides with deep-subwavelength outside-field confinements. Nanotechnology 27(6), 065501 (2016)ADSCrossRefGoogle Scholar
  51. Tan, J., Li, Y., Zhou, Y., He, M., Chen, Y., Li, M., Lu, P.: Identifying the contributions of multiple-returning recollision orbits in strong-field above-threshold ionization. Opt. Quant. Electron. 50(2), 57 (2018)CrossRefGoogle Scholar
  52. Torosov, B.T., Valle, G.D., Longhi, S.: Non-Hermitian shortcut to stimulated Raman adiabatic passage. Phys. Rev. A 89, 063412 (2014)ADSCrossRefGoogle Scholar
  53. Vitanov, N.V., Rangelov, A.A., Shore, B.W., Bergmann, K.: Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017)ADSCrossRefGoogle Scholar
  54. Wang, D., Liu, X., He, L., Yin, Y., Wu, D., Shi, J.: Manipulating graphene mobility and charge neutral point with ligand-bound nanoparticles as charge reservoir. Nano Lett. 10(12), 4989–4993 (2010)ADSCrossRefGoogle Scholar
  55. Wang, F., Qin, C.Z., Wang, B., Long, H., Wang, K., Lu, P.X.: Rabi oscillations of plasmonic supermodes in graphene multilayer arrays. IEEE J. Sel. Top. Quant. 23(1), 4600105 (2017a)Google Scholar
  56. Wang, S., Wang, B., Qin, C., Wang, K., Long, H., Lu, P.: Rabi oscillations of optical modes in a waveguide with dynamic modulation. Opt. Quant. Electron. 49, 389 (2017b)CrossRefGoogle Scholar
  57. Wang, Z., Wang, B., Long, H., Wang, K., Lu, P.: Surface plasmonic lattice solitons in semi-infinite graphene sheet arrays. J. Lightwave Technol. 35(14), 2960–2965 (2017c)ADSCrossRefGoogle Scholar
  58. Wang, F., Ke, S., Qin, C., Wang, B., Long, H., Wang, K., Lu, P.: Topological interface modes in graphene multilayer arrays. Opt. Laser Technol. 103, 272–278 (2018a)ADSCrossRefGoogle Scholar
  59. Wang, B., He, L., Wang, F., Yuan, H., Zhu, X., Lan, P., Lu, P.: Resonance-modulated wavelength scaling of high-order-harmonic generation from. Phys. Rev. A 97(1), 013417 (2018b)ADSCrossRefGoogle Scholar
  60. Wu, Q., Chen, Y., Huang, B., Song, J., Xia, Y., Zheng, S.-B.: Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics. Opt. Express 24(20), 22847–22864 (2016)ADSCrossRefGoogle Scholar
  61. Yuan, H., He, L., Wang, F., Wang, B., Liu, W., Hong, Z.: Generation of isolated attosecond pulses in a multi-cycle inhomogeneous two-color field without CEP stabilization. Opt. Quant. Electron. 49(6), 214 (2017)CrossRefGoogle Scholar
  62. Yuan, H., He, L., Wang, F., Wang, B., Zhu, X., Lan, P., Lu, P.: Tomography of asymmetric molecular orbitals with a one-color inhomogeneous field. Opt. Lett. 43(4), 931 (2018)ADSCrossRefGoogle Scholar
  63. Zhao, D., Wang, Z., Long, H., Wang, K., Wang, B., Lu, P.: Optical bistability in defective photonic multilayers doped by graphene. Opt. Quant. Electron. 49, 163 (2017)CrossRefGoogle Scholar
  64. Zhao, D., Liu, W., Ke, S., Liu, Q.: Large lateral shift in complex dielectric multilayers with nearly parity-time symmetry. Opt. Quant. Electron. 50, 323 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Optical Information TechnologyWuhan Institute of TechnologyWuhanChina
  2. 2.School of PhysicsHuazhong University of Science and TechnologyWuhanChina
  3. 3.School of Electronics Information and EngineeringHubei University of Science and TechnologyXianningChina

Personalised recommendations