Advertisement

40 Gbps–80 GHz PSK-MDM based Ro-FSO transmission system

  • Sushank Chaudhary
  • Bangjiang Lin
  • Xuan Tang
  • Xian Wei
  • Zhenlei Zhou
  • Chun Lin
  • Min Zhang
  • Haiguang Zhang
Article
  • 34 Downloads

Abstract

Bandwidth shortage of wireless carriers is a global issue that has further led to investigating the use of millimeter wave (mm-wave) in broadband cellular communication infrastructure. Radio over free space (Ro-FSO) optical system provides seamless integration of radio and optical platforms and makes it suitable for millimeter applications. This work is focused on transmission of two phase shift key encoded independent radio channels, each carrying 20 Gbps–40 GHz data, by mode division multiplexing of two modes: Laguarre Gaussian (LG) 00 and Hermite Gaussian (HG) 01. Furthermore, the modal decomposition of both channels is reported in terms of power coupling coefficient.

Keywords

Radio over free space (Ro-FSO) Phase shift key (PSK) Laguerre Gaussian mode Hermite Gaussian mode Mode division multiplexing 

References

  1. Amphawan, A., Chaudhary, S., Chan, V.: 2 × 20 Gbps-40 GHz OFDM Ro-FSO transmission with mode division multiplexing. J. Eur. Opt. Soc. Rapid Publ. (2014).  https://doi.org/10.2971/jeos.2014.14041 Google Scholar
  2. Amphawan, A., Chaudhary, S., Din, R., Omar, M.N.: 5 Gbps HG 0, 1 and HG 0, 3 optical mode division multiplexing for RoFSO. In 2015 IEEE 11th International Colloquium on Signal Processing & Its Applications (CSPA), pp. 145–149 (2015a)Google Scholar
  3. Amphawan, A., Chaudhary, S., Samad, H., Ahmad, J., Poly-Tech, K.: Mode division multiplexing of LG and HG modes in Ro-FSO (2015b)Google Scholar
  4. Amphawan, A., Chaudhary, S., Elfouly, T., Abualsaud, K.: Optical mode division multiplexing for secure Ro-FSO WLANs. Adv. Sci. Lett. 21, 3046–3049 (2015c)CrossRefGoogle Scholar
  5. Aurzada, F., Lévesque, M., Maier, M., Reisslein, M.: FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis. IEEE ACM Trans. Netw. (TON) 22, 1176–1189 (2014)CrossRefGoogle Scholar
  6. Chaudhary, S., Bansal, P., Lumb, M.: Effect of beam divergence on WDM-FSO transmission system. Int. J. Comput. Appl. 93 (2014a)Google Scholar
  7. Chaudhary, S., Amphawan, A., Nisar, K.: Realization of free space optics with OFDM under atmospheric turbulence. Opt. Int. J. Light Electron Opt. 125, 5196–5198 (2014b)CrossRefGoogle Scholar
  8. Chaudhary, S., Chauhan, P., Sharma, A.: High speed 4 × 2.5 Gbps–5 GHz AMI-WDM-RoF transmission system for WLANs. J. Opt. Commun. (2017a).  https://doi.org/10.1515/joc-2017-0082 Google Scholar
  9. Chaudhary, S., Thakur, D., Sharma, A.: 10 Gbps-60 GHz RoF transmission system for 5 G applications. J. Opt. Commun. (2017b).  https://doi.org/10.1515/joc-2017-0079 Google Scholar
  10. Ghatak, A., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  11. Gordon, G.S., Crisp, M.J., Penty, R.V., Wilkinson, T.D., White, I.H.: Feasibility demonstration of a mode-division multiplexed MIMO-enabled radio-over-fiber distributed antenna system. J. Lightwave Technol. 32, 3521–3528 (2014)ADSCrossRefGoogle Scholar
  12. Hsu, C.-C., Liang, Y.-A., Gomez, J.L.G., Chou, C.-F., Lin, C.-J.: Distributed flexible channel assignment in WLANs. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp. 493–498 (2013)Google Scholar
  13. Kanno, A., Inagaki, K., Morohashi, I., Sakamoto, T., Kuri, T., Hosako, I., et al.: 40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Opt. Express 19, B56–B63 (2011)CrossRefGoogle Scholar
  14. Kaur, D., Chaudhary, S.: 4 × 10 GBPS cost effective hybrid OADM-MDM short haul interconnects. Microwave Opt. Technol. Lett. 58, 1613–1617 (2016)CrossRefGoogle Scholar
  15. Kaur, P., Kaur, R., Chaudhary, S.: Implementation of high speed long reach hybrid radio over multimode transmission system. Int. J. Comput. Appl. 91 (2014)Google Scholar
  16. Kazaura, K., Wakamori, K., Matsumoto, M., Higashino, T., Tsukamoto, K., Komaki, S.: RoFSO: a universal platform for convergence of fiber and free-space optical communication networks. IEEE Commun. Mag. 48, 130–137 (2010)CrossRefGoogle Scholar
  17. Kim, I.I., McArthur, B., Korevaar, E.J.: Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Inf. Technol. 2001, 26–37 (2000)Google Scholar
  18. Kumar, L., Sharma, V., Singh, A.: Feasibility and modelling for convergence of optical-wireless network—a review. AEU Int. J. Electron. Commun. 80, 144–156 (2017)CrossRefGoogle Scholar
  19. Majumdar, A.K.: Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. Rep. 2, 345–396 (2005)CrossRefGoogle Scholar
  20. McCartney, E.J.: “Optics of the Atmosphere: Scattering by Molecules and Particles, vol. 1. Wiley, New York (1976)Google Scholar
  21. Naila, C.B., Wakamori, K., Matsumoto, M.: Transmission analysis of M-ary phase shift keying multiple-subcarrier modulation signals over radio-on-free-space optical channel with aperture averaging. Opt. Eng. 50, 105006-1–105006-9 (2011)ADSCrossRefGoogle Scholar
  22. Ren, Y., Wang, Z., Liao, P., Li, L., Xie, G., Huang, H., et al.: Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. Opt. Lett. 41, 622–625 (2016)ADSCrossRefGoogle Scholar
  23. Sarangal, H., Singh, A., Malhotra, J., et al.: A cost effective 100 Gbps hybrid MDM–OCDMA–FSO transmission system under atmospheric turbulences. Opt. Quant. Electron. 49, 184 (2017).  https://doi.org/10.1007/s11082-017-1019-2 CrossRefGoogle Scholar
  24. Tewari, B.P., Ghosh, S.C.: Interference avoidance through frequency assignment and association control in IEEE 802.11 WLAN. In: 2014 IEEE 13th International Symposium on Network Computing and Applications (NCA), pp. 91–95 (2014)Google Scholar
  25. Trung, H.D., Pham, A.T.: Pointing error effects on performance of free-space optical communication systems using SC-QAM signals over atmospheric turbulence channels. AEU Int. J. Electron. Commun. 68, 869–876 (2014)CrossRefGoogle Scholar
  26. Vellakudiyan, J., Muthuchidambaranathan, P., Bui, F.M., Palliyembil, V.: Performance of a subcarrier intensity modulated differential phase-shift keying over generalized turbulence channel. AEU Int. J. Electron. Commun. 69, 1569–1573 (2015)CrossRefGoogle Scholar
  27. Xie, G., Ren, Y., Yan, Y., Huang, H., Ahmed, N., Li, L., et al.: Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices. Opt. Lett. 41, 3447–3450 (2016)ADSCrossRefGoogle Scholar
  28. Zhao, Y., Liu, J., Du, J., Li, S., Luo, Y., Wang, A., et al.: Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing. In: Optical Fiber Communication Conference, p. Th1H. 3 (2016)Google Scholar
  29. Zhou, H., Mao, S., Agrawal, P.: Optical power allocation for adaptive WDM transmissions in free space optical networks. In: 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp. 2677–2682 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Quanzhou Institute of Equipment Manufacturing, Haixi InstitutesChinese Academy of SciencesQuanzhouChina

Personalised recommendations