Advertisement

High-reflectivity non-periodic sub-wavelength gratings with small-angle beam-steering ability and its application in Fabry–Perot cavity

  • Shuai Zhang
  • Xiaofeng Duan
  • Gongqing Li
  • Kai Liu
  • Yongqing Huang
  • Xiaomin Ren
Article
  • 52 Downloads

Abstract

We report a high-reflectivity non-periodic sub-wavelength gratings (SWGs) mirror with small-angle beam-steering ability for reflect light. It presents a distinctive characteristic of flexibly controlling the width of oscillation optical field for the improved Fabry–Perot (F–P) cavity. We propose a detailed principle analysis of the improved cavity. By finding out a set of SWGs with the designed structural parameters, both high reflectivity (> 93%) and beam steering (1°) can be implemented. By setting beam-steering angle and cavity length, we can control the width of oscillation optical field in the improved cavity. Beam steering ability and property of controlling the oscillation width are numerically investigated by finite element method. Simulation results prove that cavity length and steering angle can effectively control the main width of oscillation optical field, and the width is linearly associated with the cavity length.

Keywords

Optoelectronic devices Fabry–Perot cavity Non-periodic sub-wavelength gratings Distributed Bragg reflectors 

Notes

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant Nos. 61674018, 61574019 and 61674020), the Natural Science Foundation of Beijing Municipality, China (Grant No. 4132069), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2016ZT10).

References

  1. Bathe, K.: Finite Element Method. Wiley Encyclopedia of Computer Science and Engineering, pp. 394–409. Wiley, New York (2000)Google Scholar
  2. Carletti, L., Malureanu, R., Mørk, J., Chung, I.S.: High-index-contrast grating reflector with beam steering ability for the transmitted beam. Opt. Express 19, 23567–23572 (2011)ADSCrossRefGoogle Scholar
  3. Chen, H., Liang, Y.: Analysis of the tunable asymmetric fiber F–P cavity for fiber sensor edge-filter demodulation. Photonic Sens. 4, 338–343 (2014)ADSCrossRefGoogle Scholar
  4. Fang, W., Huang, Y., Duan, X., Liu, K., Fei, J., Ren, X.: High-reflectivity high-contrast grating focusing reflector on silicon-on-insulator wafer. Chin. Phys. B 25, 306–310 (2016)Google Scholar
  5. Fattal, D., Li, J., Peng, Z., Fiorentino, M., Beausoleil, R.G.: Flat dielectric grating reflectors with focusing abilities. Nat. Photonics 4, 466–470 (2010)ADSCrossRefGoogle Scholar
  6. Gong, Y., Zhao, T., Rao, Y. J., Wu, Y., Guo, Y.: A ray-transfer-matrix model for hybrid fiber Fabry–Perot sensor based on graded-index multimode fiber. Opt. Express 18, 15844–15852 (2010)ADSCrossRefGoogle Scholar
  7. Guo, C., Ye, W., Yuan, X., Zeng, C., Ji, J.: Research on sub-wavelength grating polarizing beam splitter. Acta Opt. Sin. 30, 2690–2695 (2010)CrossRefGoogle Scholar
  8. Karagodsky, V., Sedgwick, F.G., Changhasnain, C.J.: Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18, 16973–16988 (2010)ADSCrossRefGoogle Scholar
  9. Ma, C., Huang, Y., Duan, X., Ren, X.: High-transmittivity non-periodic sub-wavelength high-contrast grating with large-angle beam-steering ability. Chin. Opt. Lett. 12, 5–8 (2014)Google Scholar
  10. Mateus, C.F.R., Huang, M.C.Y., Deng, Y., Neureuther, A.R.: Ultrabroadband mirror using low-index cladded subwavelength grating. Photonics Technol. Lett. IEEE 16, 518–520 (2004)ADSCrossRefGoogle Scholar
  11. Moharam, M.G., Gaylord, T.K.: Regorous theory of planar-reflection-grating diffraction (a). J. Opt. Soc. Am. 72, 1917–1983 (1982)Google Scholar
  12. Ouyang, C., Ping, S., Wu, K.: High pulse energy all-fiber F–P cavity dissipative soliton laser. IEEE Photonics Technol. Lett. 25, 303–305 (2013)ADSCrossRefGoogle Scholar
  13. Pommet, D.A., Grann, E.B., Moharam, M.G., Gaylord, T.K.: Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068–1076 (1995)ADSCrossRefGoogle Scholar
  14. Ren, Q., Li, J., Hong, Y., Jia, P., Xiong, J.: An arc tangent function demodulation method of fiber-optic Fabry–Perot high-temperature pressure sensor. Photonic Sens. 7, 211–216 (2017)ADSCrossRefGoogle Scholar
  15. Wang, T., Chen, N., Zhao, Z., Pang, F., Chen, Z., Wang, T.: All-fiber power sensor based on silicon-germanium core fiber F–P cavity. J. Phys: Conf. Ser. 844, 012036 (2017)Google Scholar
  16. Zhao, H., Peng, Y., Tan, J., Liao, C., Li, P., Ren, X.: Optimal design of sub-wavelength metal rectangular gratings for polarizing beam splitter based on effective medium theory. Chin. Phys. B 18, 5326–5330 (2009)ADSCrossRefGoogle Scholar
  17. Zhou, Y., Huang, M.C.Y., Chase, C., Karagodsky, V., Moewe, M., Pesala, B.: High-index-contrast grating (HCG) and its applications in optoelectronic devices. IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shuai Zhang
    • 1
  • Xiaofeng Duan
    • 1
  • Gongqing Li
    • 1
  • Kai Liu
    • 1
  • Yongqing Huang
    • 1
  • Xiaomin Ren
    • 1
  1. 1.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations