Advertisement

Influence of the effect of two-photon interband absorption saturation on the photoexcitation of monocrystalline Si by intense femtosecond laser pulse

  • Dmitry S. Polyakov
  • Evgeny B. Yakovlev
Article
  • 51 Downloads

Abstract

Theoretical analysis of the influence of the effect of two-photon interband absorption saturation on space–time dynamics of the concentration of electron-hole plasma photoexcited under the action of a femtosecond laser pulse in monocrystalline silicon was carried out in this work. It was shown that the effects of the depletion of electrons in the valence band and the filling of conduction band may lead to a twofold decrease of the two-photon absorption coefficient and may also affect the concentration of photoexcited carriers achieved in the femtosecond laser treatment process.

Keywords

Femtosecond laser pulse Monocrystalline silicon Two-photon interband absorption 

Notes

Acknowledgements

This work was supported by RFBR Grant #18-32-00839.

References

  1. Aktsipetrov, O.A., Baranova, I.M., Evtiuhov, K.N.: Nelineynaya optica kremniya i kremnyevyh nanostructur [Nonlinear Optics of Silicon and Silicon Nanostructures]. Fizmatlit, Moscow (2012). (in Russian) Google Scholar
  2. Ashitkov, S.I., Ovchinnikov, A.V., Agranat, M.B.: Recombination of an electron-hole plasma in silicon under the action of femtosecond laser pulses. JETP Lett. 79, 529–531 (2004)CrossRefADSGoogle Scholar
  3. Bonch-Bruevich, A.M., Imas, Y.A., Libenson, N.M., Salyadinov, V.S., Shandybina, G.D., Yakovlev, E.B.: Volny prosvetleniya i potemneniya v kremnii, indutsiryemye izlucheniem neodimovogo OKG [Waves of enlightenment and darkening in silicon induced under the action of Ng:glass laser]. Tech. Phys. 47, 609–616 (1977). (In Russian)Google Scholar
  4. Bristow, A.D., Rotenberg, N., van Driel, H.M.: Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett. 90, 191104 (2007)CrossRefADSGoogle Scholar
  5. Bulgakova, N.M., Burakov, I.M., Mescheryakov, Y.M., Stoian, R., Rosenfeld, A., Hertel, I.V.: Theoretical models and qualitative interpretations of fs laser material processing. J. Laser Micro/Nanoeng. 2, 76–86 (2007)CrossRefGoogle Scholar
  6. Bulgakova, N.M., Stoian, R., Rosenfeld, A.: Laser-induced modification of transparent crystals and glasses. Quantum Electron. 40, 966–985 (2010)CrossRefADSGoogle Scholar
  7. Choi, T., Grigoropoulos, P.: Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon. J. Appl. Phys. 92, 4918–4925 (2002)CrossRefADSGoogle Scholar
  8. Colombier, J., Combis, P., Audorad, E., Stoian, R.: Transient optical response of ultrafast nonequilibrium excited metals: effects of electron-electron contribution to collisional absorption. Phys. Rev. E. 77, 036409 (2008)CrossRefADSGoogle Scholar
  9. Derrien, T., Kruger, J., Itina, T., Holm, S., Rosenfeld, A., Bonse, J.: Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes. Appl. Phys. A 117, 77–81 (2014)CrossRefADSGoogle Scholar
  10. Dyukin, R.V., Martsinovski, G.A., Shandybina, G.D., Yakovlev, E.B.: Electrophysical phenomena accompanying femtosecond impacts of laser radiation on semiconductors. J. Opt. Technol. 78, 88–92 (2011)CrossRefGoogle Scholar
  11. Garcia, H., Kalyanaraman, R.: Phonon-assisted two-photon absorption in the presence of a DC-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors. J. Phys. B At. Mol. Opt. Phys. 39, 2737–2746 (2006)CrossRefADSGoogle Scholar
  12. Guk, I.V., Martsinovski, G.A., Shandybina, G.D., Yakovlev, E.B.: Simulation of the absorption of a femtosecond laser pulse in crystalline silicon. Semiconductors 47, 1616–1620 (2013)CrossRefADSGoogle Scholar
  13. Guk, I.V., Shandybina, G.D., Yakovlev, E.B.: Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses. Appl. Surf. Sci. 353, 851–855 (2015)CrossRefADSGoogle Scholar
  14. Guk, I.V., Shandybina, G.D., Yakovlev, E.B.: Role of the heat accumulation effect in the multipulse modes of the femtosecond laser microstructuring of silicon. Semiconductors 50, 694–698 (2016)CrossRefADSGoogle Scholar
  15. Inogamov, N.A., Petrov, Y.V.: Thermal conductivity of metals with hot electrons. JETP 110, 446–468 (2010)CrossRefADSGoogle Scholar
  16. Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Saltuganov, P.N., Seleznev, L.V., Sinitsyn, D.V., Sharipov, A.R.: Ultrafast electron dynamics on the silicon surface excited by an intense femtosecond laser pulse. JETP Lett. 96, 375–379 (2012)CrossRefADSGoogle Scholar
  17. Kononenko, V.V., Zavedeev, E.V., Latushko, M.I., Pashinin, V.P., Konov, V.I., Dianov, E.M.: Excitation of the electronic subsystem of silicon by femtosecond laser irradiation. Quantum Electron. 42, 925–930 (2012)CrossRefGoogle Scholar
  18. Levy, Y., Derrien, T., Bulgakova, N.M., Gurevich, E., Mocek, T.: Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci. 374, 157–164 (2016)CrossRefADSGoogle Scholar
  19. Lipp, V.P., Rethfeld, B., Garcia, M.E., Ivanov, D.S.: Atomistic-continuum modeling of short laser pulse melting of Si targets. Phys. Rev. B. 90, 245306 (2014)CrossRefADSGoogle Scholar
  20. Martsinovski, G.A., Shandybina, G.D., Dementeva, Yu.S., Dyukin, R.V., Zabotnov, S.V., Golovan, L.A., Kashkarov, P.K.: Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses. Semiconductors 43, 1298–1304 (2009)CrossRefADSGoogle Scholar
  21. Polyakov, D.S., Yakovlev, E.B., Ivanov, D.S.: Specifics of electron–ion heat exchange under intense photoexcitation of dielectrics with ultrashort laser pulses. Tech. Phys. Lett. 43, 247–250 (2017)CrossRefADSGoogle Scholar
  22. Ramer, A., Rethfeld, B., Osmani, O.: Laser damage in silicon: energy absorption, relaxation, and transport. J. Appl. Phys. 116, 053508 (2014)CrossRefADSGoogle Scholar
  23. Sokolowski-Tinten, K., von der Linde, D.: Generation of dense electron-hole plasmas in silicon. Phys. Rev. B. 61, 2643–2650 (2000)CrossRefADSGoogle Scholar
  24. Uhanov, Yu.I.: Opticheskie svoistva polyprovodnikov [Optical Properties of Semiconductors]. Nauka, Moscow (1977). (in Russian) Google Scholar
  25. van Dreil, H.M.: Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-m picosecond laser pulses. Phys. Rev. B. 35, 8166–8176 (1987)CrossRefADSGoogle Scholar
  26. Veiko, V.P., Libenson, M.N., Chervyakov, G.G., Yakovlev, E.B.: Vzaimodeistvie Lazernogo Izlucheniya s Veshchestvom [Interaction of Laser Radiation with Matter]. Fizmatlit, Moscow (2008). (in Russian) Google Scholar
  27. Vorobyev, A.Y., Guo, C.: Direct creation of black silicon using femtosecond laser pulses. Appl. Surf. Sci. 257, 7291–7294 (2011a)CrossRefADSGoogle Scholar
  28. Vorobyev, A.Y., Guo, C.: Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express 19, A1031–A1036 (2011b)CrossRefADSGoogle Scholar
  29. Zorba, V., Persano, L., Pisignano, D., Athanassiou, A., Stratakis, E., Cingolani, R., Tzanetakis, P., Fotakis, C.: Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation. Nanotechnology 17, 3234–3238 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ITMO UniversitySaint PetersburgRussia

Personalised recommendations