Gold chloride cluster ions generated by vacuum laser ablation

  • Boris RajčićEmail author
  • Silvana B. Dimitrijević
  • Marijana Petković
  • Marija Nišavić
  • Mario Cindrić
  • Filip Veljković
  • Suzana Veličković
Part of the following topical collections:
  1. Focus on Optics and Bio-photonics, Photonica 2017


In this work, a simple way for study the possibility of formation a vapor cluster species of tetrachloroauric acid (HAuCl4), using the laser ablation in the absence of a buffer or reactive atmosphere, and without a postablation supersonic expansion on a commercial matrix assisted laser desorption/ionization time-of-flight mass spectrometer, is reported. Tetrachloroauric acid is known as precursor for the synthesis of gold nanostructures and the complex salts; therefore it is an important task to discover and quantify the species arising from HAuCl4, in order to understand their role in the gold assisted reactions. Mass spectrum of HAuCl4 in a reflector negative-ion mode contains the hydrated mono- and dinuclear gold clusters in the m/z range 286–436, and gold chloride clusters in the m/z range 447–795. In the first part of spectrum, m/z range 286–436, the hydrated gold cluster species of type Au n (H2O)m (n = 1–2; m = 1, 2, 5, 7, 8) and [Aun(OH)k](H2O)m (n = 1–2; k = 1–2; m = 1, 4–8) were found. Besides that, there are gold chloride clusters with general formula [AuHr(HCl)2](H2O)m (m = 1–5; 8–9; r = 0–2) in this part of spectrum. In the second part of spectrum, the m/z range 447–795, only gold chloride clusters were obtained. Their general formulae can be written as [AuClt(HCl)v](H2O)m (t = 1–4; v = 5–8; m = 2–4, 6–8) and [Aun(HCl)v](H2O)m (n = 1–2, v = 4–5, m = 1–2, 5, 7). The analysis of concentration effects on the LDI mass spectra of gold clusters reveals that the relative intensities of signals for the mono- and dinuclear Au clusters increase with decreasing the concentration of water HAuCl4 solutions.


LDI Gold chloride clusters Mass spectrometry Formation 



This work was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 172019).


  1. Acton, Q.A.: Advances in Nanotechnology Research and Application: 2012 Edition. ScholarlyEditions, Atlanta (2012)Google Scholar
  2. Andrews, L., Wang, X.: Infrared spectra and structures of the stable CuH2 , AgH2 , AuH2 , and AuH4 anions and the AuH2 molecule. J. Am. Chem. Soc. 125, 11751–11760 (2003)CrossRefGoogle Scholar
  3. Arakelian, S., Emel’yanov, V., Kutrovskaya, S., Kucherik, A., Zimin, S.: Laser-induced semiconductor nanocluster structures on the solid surface: new physical principles to construct the hybrid elements for photonics. Opt. Quant. Electron. 48, 342 (2016a)CrossRefGoogle Scholar
  4. Arakelian, S., Kutrovskaya, S., Kucherik, A., Osipov, A., Povolotckaia, A., Povolotskiy, A., Manshina, A.: Laser-induced synthesis of nanostructured metal–carbon clusters and complexes. Opt. Quant. Electron. 48, 505 (2016b)CrossRefGoogle Scholar
  5. Bondybey, V.E., English, J.H.: Laser induced fluorescence of metal clusters produced by laser vaporization: gas phase spectrum of Pb2. J. Chem. Phys. 74, 6978 (1981)ADSCrossRefGoogle Scholar
  6. Cheung, J., Horwitz, J.: Pulsed laser deposition history and laser–target interactions. MRS Bull. 17, 30–36 (1992). CrossRefGoogle Scholar
  7. Daniel, M.C.M., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chem. Rev. 104, 293–346 (2004). CrossRefGoogle Scholar
  8. Dietz, T.G., Duncan, M.A., Powers, D.E., Smalley, R.E.: Laser production of supersonic metal cluster beams. J. Chem. Phys. 74, 6511 (1981)ADSCrossRefGoogle Scholar
  9. Gibson, J.K.: Laser ablation and gas-phase reactions of small gold cluster ions, Aun+ (1 ≤ n ≤ 7). J. Vac. Sci. Technol. A 16, 653 (1998)ADSCrossRefGoogle Scholar
  10. Hashimoto, S., Werner, D., Uwada, T.: Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C Photochem. Rev. 13, 28–54 (2012)CrossRefGoogle Scholar
  11. Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F.: Matrix-assisted ultraviolet laserdesorption of non-volatile compounds. Int. J Mass Spectrom. Ion Process. 78, 53 (1987)ADSCrossRefGoogle Scholar
  12. Karataev, V.I.: Determining trace amounts of gold in natural samples and chemical compounds. Tech. Phys. Lett. 34, 1082–1084 (2008). ADSCrossRefGoogle Scholar
  13. Lemke, K.H.: Gold chloride clusters with Au(III) and Au(I) probed by FT-ICR mass spectrometry and MP2 theory. Phys. Chem. Chem. Phys. 16, 7813–7822 (2014). CrossRefGoogle Scholar
  14. Liu, H.T., Wang, Y.L., Xiong, X.G., Dau, P.D., Piazza, Z.A., Huang, D.L., Xu, C.Q., Li, J., Wang, L.S.: The electronic structure and chemical bonding in gold dihydride: AuH2 and AuH2. Chem. Sci. 3, 3286 (2012)CrossRefGoogle Scholar
  15. Lowndes, D.H., Geohegan, D.B., Puretzky, A.A., Norton, D.P., Rouleau, C.M.: Synthesis of novel thin-film materials by pulsed laser deposition. Science 273, 898–903 (1996)ADSCrossRefGoogle Scholar
  16. Lubman, D.M. (ed.): Lasers and mass spectrometry. Oxford University Press, New York (1990)Google Scholar
  17. McIndoe, J.S.: Laser synthesis of transition metal clusters. Transit. Met. Chem. 28, 122–131 (2003). CrossRefGoogle Scholar
  18. Peña-Méndez, E.M., Hernández-Fernaud, J.R., Nagender, R., Houška, J., Havel, J.: The chemistry of gold clusters in plasma generated with MALDI, laser desorption ionization and laser ablation from various precursors. Chem. Listy 102, s1394–s1398 (2008)Google Scholar
  19. Schwerdtfeger, P., Boyd, P.D.W., Burrell, A.K., Robinson, W.T., Taylor, M.J.: Relativistic effects in gold chemistry. 3. Gold(I) complexes. Inorg. Chem. 29, 3593 (1990)CrossRefGoogle Scholar
  20. Yamashita, M., Fenn, J.B.: Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88, 4451 (1984)CrossRefGoogle Scholar
  21. Wang, L.M., Wang, L.S.: Probing the electronic properties and structural evolution of anionic gold clusters in the gas phase. Nanoscale 4, 4038 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Mining and Metallurgy Institute BorBorSerbia
  3. 3.Ruđer Bošković InstituteZagrebCroatia

Personalised recommendations