Nearly perfect metamaterial plasmonic absorbers for solar energy applications

  • Nihal F. F. Areed
  • Zienab EL-Wasif
  • S. S. A. Obayya
Article
  • 33 Downloads

Abstract

In this study, two different approaches for the design of broadband polarization-independent wide-angle metamaterial plasmonic absorbers (MPA) are presented. The proposed MPAs are made of periodic arrays of Nickel (Ni) or Wolfram (W) cubes. The top surfaces of the cubes are texturized using silicon dioxide (SiO2). The proposed PMAs with two different optimized textures experience plasmonic resonance characteristics that enable near unity visible light absorption. The parametric studies carried on the proposed MPAs with the aid of 3D-FDTD method results in wide-angle near perfect absorption characteristic that is > 0.96 for all visible regimes. Additionally, the obtained results show almost perfect absorption of above 99% over the frequency ranges extending from ~ 458 to ~ 525 and ~ 489 to ~ 665 THz. Besides, numerical results demonstrate that the proposed PMAs also exhibit both polarization and angle independency for the whole visible regime. Further, the absorption characteristics of proposed MPAs near the infrared and ultraviolet regimes are investigated.

Keywords

Plasmonics Absorbers Finite difference time domain (FDTD) 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical standard

The authors would like to ensure the objectivity and transparency in the submitted research paper. Additionally, the authors would like to ensure that accepted principles of ethical and professional conduct have been followed through the preparation of the proposed paper.

Human and animal rights statement

Moreover, the submitter research does not involve human participants, or animals.

References

  1. Akgol, O., Dincer, F., Karaaslan, M., Unal, E., Sabah, C.: Perfect metamaterial absorbers for solar cell applications in the microwave, infrared, visible regime. Prog. Electromagn. Res. 144, 93–101 (2014).  https://doi.org/10.2528/pier13111404 CrossRefGoogle Scholar
  2. Areed, N.F.F., Obayya, S.S.A.: Multiple image encryption system based on nematic liquid photonic crystal layers. J. Lightwave Technol. 32, 1344–1350 (2014)ADSCrossRefGoogle Scholar
  3. Areed, N.F.F., El Malt, S.M., Obayya, S.S.A.: Broadband omnidirectional nearly perfect plasmonic absorber for solar energy harvesting. IEEE. Photonics J. 8, 4802718-1–4802718-17 (2016a).  https://doi.org/10.1109/jphot.2016.2611657 CrossRefGoogle Scholar
  4. Areed, N.F.F., Fouad, M., Obayya, S.S.A.: Highly efficient solid gear-shaped silicon nanowire for solar energy harvesting. IEEE Photonics Technol. Lett. 29, 205–208 (2016b)ADSCrossRefGoogle Scholar
  5. Areed, N.F.F., El Fakhrany, A., Hameed, M.F., Obayya, S.S.A.: Controlled optical photonic crystal AND gate using nematic liquid crystal layers. J. Opt. Quant. Electron. 49, 45–49 (2017).  https://doi.org/10.1007/s11082-016-0852-zpp CrossRefGoogle Scholar
  6. Bağmanc, M., Karaaslan, M., Ünal, E., Akgol, O., Karadağ, F., Sabah, C.: Broad-band polarization-independent metamaterial absorber for solar energy harvesting applications. Physica E 90, 1–6 (2017).  https://doi.org/10.1016/j.physe.2017.03.001 ADSCrossRefGoogle Scholar
  7. Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M., Pendry, J.B.: Optical cloaking with metamaterials. Nat. Photonics 1, 1–10 (2007).  https://doi.org/10.1038/nphoton.2007.28 CrossRefGoogle Scholar
  8. Chen, H.-T.: Interference theory of metamaterial perfect absorbers. Opt. Exp 20, 7165–7172 (2012)ADSCrossRefGoogle Scholar
  9. Cummer, S.A., Popa, B.I., Schurig, D., Smith, D.R., Pendry, J.B.: Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. 74, 036621 (2006).  https://doi.org/10.1103/PhysRevE.74.036621 Google Scholar
  10. Dincer, F., Karaaslan, M., Unal, E., Akgol, O., Demirel, E., Sabah, C.: Polarization and angle independent perfect metamaterial absorber based on discontinuous crosswire- strips. J. Electromagn. Waves Appl. 28, 741–751 (2014).  https://doi.org/10.1080/09205071.2014.888322 CrossRefGoogle Scholar
  11. Dogan, E., Unal, E., Kapusuz, D., Karaaslan, M., Sabah, C.: Microstrip patch antenna covered with left handed metamaterial. ACES J., 999–1004 (2013). https://www.researchgate.net/publication/272417924
  12. Elrabiaey, M.A., Areed, N.F.F., Obayya, S.S.: Novel plasmonic data storage based on nematic liquid crystal layers. J. IEEE Lightwave Technol. 34(16), 3726–3732 (2016)ADSCrossRefGoogle Scholar
  13. Garcia, N., Nieto-Vesperinas, M.: Left-handed materials do not make a perfect lens. Phys. Rev. Lett. 88, 207403-1–207403-4 (2002).  https://doi.org/10.1103/PhysRevLett.88.207403 ADSGoogle Scholar
  14. Ghanim, A.R.M., Hussein, M., Hameed, M.F.O.: Highly directive hybrid Yagi-Uda nanoantenna for radition emission enhancement. IEEE Photonics J. 8, 1–12 (2016).  https://doi.org/10.1109/jphot.2016.2615596 CrossRefGoogle Scholar
  15. Hameed, M.F.O., Obayya, S.S.A.: Design of passive polarization rotator based on silica photonic crystal fiber. Opt. Lett. 36(16), 3133–3135 (2011)ADSCrossRefGoogle Scholar
  16. Johnson, P.B., Christy, R.W.: Optical constants of the transition metals. Phys. Rev. B 6, 1–10 (1974).  https://doi.org/10.1103/PhysRevB.9.5056 Google Scholar
  17. Karaaslan, M., Bakir, M.: Chiral metamaterial based multifunctional sensor applications, progress. Electromagn. Res. 149, 55–67 (2014).  https://doi.org/10.2528/pier14070111 CrossRefGoogle Scholar
  18. Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J.: Photodetection with active optical antennas. Science 332, 702–704 (2011).  https://doi.org/10.1126/science.1203056 ADSCrossRefGoogle Scholar
  19. Krasnok, E., Miroshnichenko, A.E., Belov, P.A., Kivshar, Y.S., Belov, P.: All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).  https://doi.org/10.1364/OE.20.020599 ADSCrossRefGoogle Scholar
  20. Obayya, S.S.A., Somasiri, N., Rahman, B.M.A., Grattan, K.T.V.: Full vectorial finite element modeling of novel polarization rotators. Opt. Quant. Electron. 35(4–5), 297–312 (2003)CrossRefGoogle Scholar
  21. Obayya, S.S.A., Hameed, M.F.O., Areed, N.F.F.: Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications. Wiley, Hoboken (2016)CrossRefGoogle Scholar
  22. Palik, E.D.: Handbook of Optical Constants of Solids, pp. 409–427. Academic Press, Cambridge (1997).  https://doi.org/10.1016/B978-012544415-6.50017-0 CrossRefGoogle Scholar
  23. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)ADSCrossRefGoogle Scholar
  24. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE. Trans. Microwave Theory Technol. 47, 2075–2084 (1999).  https://doi.org/10.1109/22.798002 ADSCrossRefGoogle Scholar
  25. Sabah, C., Dincer, F., Karaaslan, M., Unal, E., Akgol, O., Demirel, E.: Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Opt. Commun. 322, 137–142 (2014).  https://doi.org/10.1016/j.optcom.2014.02.036 ADSCrossRefGoogle Scholar
  26. Savelev, R.S., Sergaeva, O.N., Baranov, D.G., Krasnok, A.E., Alù, A.: Dynamically reconfigurable metal-semiconductor Yagi-Uda nanoantenna. Phys. Rev. B 95, 235409-1–235409-9 (2007).  https://doi.org/10.1103/PhysRevB.95.235409 ADSGoogle Scholar
  27. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Phys. Rev. 314, 977–980 (2006).  https://doi.org/10.1126/science.1133628 Google Scholar
  28. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).  https://doi.org/10.1126/science.1058847 ADSCrossRefGoogle Scholar
  29. Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617-1–036617-11 (2005).  https://doi.org/10.1103/PhysRevE.71.03661 ADSGoogle Scholar
  30. Song, H., Guo, L., Liu, Z., Liu, K., Zeng, X., Ji, D., Zhang, N., Hu, H., Jiang, S., Gan, Q.: Nanocavity enhancement for ultra-thin film optical absorber. Adv. Mater. 26, 2737–2743 (2014).  https://doi.org/10.1002/adma.201305793 CrossRefGoogle Scholar
  31. Unal, E., Karaaslan, M., Dincer, F., Akgol, O., Demirel, E., Sabah, C.: Design of polarization- and incident angle-independent perfect metamaterial absorber with interference theory. J. Electron. Mater. 43, 3949–3953 (2014).  https://doi.org/10.1007/s11664-014-3316-x ADSCrossRefMATHGoogle Scholar
  32. Unal, E., Dincer, F., Tetik, E., Karaaslan, M., Bakir, M., Sabah, C.: Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. Mater. Electron. 26, 9735–9740 (2015).  https://doi.org/10.1007/s10854-015-3642-7 CrossRefGoogle Scholar
  33. Ünal, E., Bağmanc, M., Karaaslan, M., Akgol, O., Sabah, C.: Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator. Opt. Quant. Electron. 49, 1–14 (2017).  https://doi.org/10.1007/s11082-017-1091-7 CrossRefGoogle Scholar
  34. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys. Uspekhi. 10, 509–514 (1968)ADSCrossRefGoogle Scholar
  35. Xiao, Z., Tang, J.: Broadband, ultrathin and polarization-insensitive metamaterial absorber based on a new mixing material in infrared and visible regions. Mater. Lett. 192, 21–24 (2017).  https://doi.org/10.1016/j.matlet.2017.01.067 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nihal F. F. Areed
    • 1
    • 2
  • Zienab EL-Wasif
    • 2
  • S. S. A. Obayya
    • 1
    • 2
  1. 1.Centre for Photonics and Smart MaterialsZewail City of Science and TechnologyGizaEgypt
  2. 2.Department of Electronics and Communications Engineering, Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations