Numerical study of dumbbell-shaped gold nanoparticles using in plasmonic waveguides in near infra-red spectrums

  • Tofiq Nurmohammadi
  • Karim Abbasian
  • Reza Yadipour
Article
  • 43 Downloads

Abstract

In this paper, we investigated plasmonic waveguides in near infra-red spectrum using dumbbell-shaped gold nanoparticles. It is possible to shift localized surface plasmon resonance (LSPR) to the desired wavelength with proper geometrical properties. 3-D FDTD simulations are used to determine the set of geometrical parameters of nanoparticles to obtain LSPR at 1310 and 1550 nm. Employing different configuration of nanoparticles chains, we not only can design waveguides with better optical characteristics but also achieve the demultiplexing function in V-form arrays. The proposed nanoparticles show sharp resonance peak, 168 FWHM bandwidth for λ = 1310, and 204 nm for λ = 1550 nm. Linear chains of particles can transport the electromagnetic energy at λ = 1310 nm, with transmission losses γL = 3 dB/452 and γT = 3 dB/446 nm and group velocities vgL = 0.336C0 and vgT = 0.256C0 for longitudinal and transverse polarizations, respectively, where C0 is the speed of light in the vacuum. At λ = 1550 nm, γL = 3 dB/490, γT = 3 dB/604, vgL = 0.382C0 and vgT = 0.260C0. Moreover, we attained 8.13 as minimum ratio of averaged electric field intensity and 36.8 as minimum ratio of averaged Poynting vector as a function of position between two ports in demultiplexing function.

Keywords

Localized surface plasmons resonance (LSPR) Loss coefficient Group velocity Finite difference time domain (FDTD) 

References

  1. Ahmadivand, A., Golmohammadi, S.: Comprehensive investigation of noble metal nanoparticles shape, size and material on the optical response of optimal plasmonic Y-splitter waveguides. Opt. Commun. 310, 1–11 (2014)ADSCrossRefGoogle Scholar
  2. Aizpurua, J., Hanarp, P., Sutherland, D.S., Käll, M., Bryant, G.W., De Abajo, F.G.: Optical properties of gold nanorings. Phys. Rev. Lett. 90(5), 057401 (2003)ADSCrossRefGoogle Scholar
  3. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)ADSCrossRefGoogle Scholar
  4. Benz, A., Campione, S., Klem, J.F., Sinclair, M.B., Brener, I.: Control of strong light–matter coupling using the capacitance of metamaterial nanocavities. Nano Lett. 15(3), 1959–1966 (2015)ADSCrossRefGoogle Scholar
  5. Brongersma, M.L., Hartman, J.W., Atwater, H.A.: Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B 62(24), R16356–R16359 (2000)ADSCrossRefGoogle Scholar
  6. Gedney, S.D.: Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth. Lect. Comput. Electromagn. 6(1), 1–250 (2011)ADSCrossRefMATHGoogle Scholar
  7. Gong, C., Leite, M.S.: Noble metal alloys for plasmonics. ACS Photonics 3(4), 507–513 (2016)CrossRefGoogle Scholar
  8. Jackson, J.D.: Electrodynamics. Wiley-VCH Verlag GmbH & Co. KGaA (1975)Google Scholar
  9. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)ADSCrossRefGoogle Scholar
  10. Jung, K.Y., Teixeira, F.L., Reano, R.M.: Au/SiO2 nanoring plasmon waveguides at optical communication band. J. Lightwave Technol. 25(9), 2757–2765 (2007)ADSCrossRefGoogle Scholar
  11. Liu, L., Han, Z., He, S.: Novel surface plasmon waveguide for high integration. Opt. Express 13(17), 6645–6650 (2005)ADSCrossRefGoogle Scholar
  12. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer (2007)Google Scholar
  13. Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A., Atwater, H.A.: Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001)CrossRefGoogle Scholar
  14. Maier, S.A., Kik, P.G., Atwater, H.A.: Optical pulse propagation in metal nanoparticle chain waveguides. Phys. Rev. B 67(20), 205402 (2003)ADSCrossRefGoogle Scholar
  15. Mulvaney, P.: Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3), 788–800 (1996)CrossRefGoogle Scholar
  16. Noginov, M.A., Zhu, G., Bahoura, M., Adegoke, J., Small, C., Ritzo, B.A., Drachev, V.P., Shalaev, V.M.: The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl. Phys. B 86(3), 455–460 (2007)ADSCrossRefGoogle Scholar
  17. Quinten, M., Leitner, A., Krenn, J.R., Aussenegg, F.R.: Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23(17), 1331–1333 (1998)ADSCrossRefGoogle Scholar
  18. Raether, H.: Surface plasmons on gratings. In: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, pp. 91–116. Springer, Berlin (1988)CrossRefGoogle Scholar
  19. Rayford, C.E., Schatz, G., Shuford, K.: Optical properties of gold nanospheres. Nanoscape 2(1), 27–33 (2005)Google Scholar
  20. Saleh, B.E., Teich, M.C., Saleh, B.E.: Fundamentals of Photonics, vol. 22. Wiley, New York (1991)CrossRefGoogle Scholar
  21. Stoleru, V.G., Towe, E.: Optical properties of nanometer-sized gold spheres and rods embedded in anodic alumina matrices. Appl. Phys. Lett. 85(22), 5152–5154 (2004)ADSCrossRefGoogle Scholar
  22. Sullivan, D.M.: Electromagnetic Simulation Using the FDTD Method. Wiley (2013)Google Scholar
  23. Sweatlock, L.A., Maier, S.A., Atwater, H.A., Penninkhof, J.J., Polman, A.: Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys. Rev. B 71(23), 235408 (2005)ADSCrossRefGoogle Scholar
  24. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech house (2005)Google Scholar
  25. Tsai, C.Y., Lin, J.W., Wu, C.Y., Lin, P.T., Lu, T.W., Lee, P.T.: Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett. 12(3), 1648–1654 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TabrizTabrizIran
  2. 2.School of Engineering Emerging TechnologiesUniversity of TabrizTabrizIran
  3. 3.Electrical Engineering DepartmentUniversity of BonabBonabIran

Personalised recommendations