Advertisement

Model pathway diagrams for the representation of mathematical models

  • Thomas Koprucki
  • Michael Kohlhase
  • Karsten Tabelow
  • Dennis Müller
  • Florian Rabe
Article
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices

Abstract

Mathematical models are the foundation of numerical simulation of optoelectronic devices. We present a concept for a machine-actionable as well as human-understandable representation of the mathematical knowledge they contain and the domain-specific knowledge they are based on. We propose to use theory graphs to formalize mathematical models and model pathway diagrams to visualize them. We illustrate our approach by application to the van Roosbroeck system describing the carrier transport in semiconductors by drift and diffusion. We introduce an approach for the block-based composition of models from simpler components.

Keywords

Mathematical models Research data Model pathway diagrams Drift–diffusion equations 

Notes

Acknowledgements

We gratefully acknowledge EU funding for the OpenDreamKit project in the Horizon 2020 framework under Grant 676541 as well as DFG funding under Grant RA-18723-1 OAF. Our discussions have particularly profited from contributions by Wolfram Sperber (general math background).

References

  1. Baker, M.: Is there a reproducibility crisis? Nature 533(7604), 452–455 (2016)ADSCrossRefGoogle Scholar
  2. Bourne, P.E., Clark, T.W., Dale, R., de Waard, A., Herman, I., Hovy, E.H., Shotton, D.: Improving the future of research communications and e-scholarship (Dagstuhl perspectives workshop 11331). Dagstuhl Manif. 1(1), 41–60 (2012).  https://doi.org/10.4230/DagMan.1.1.41 Google Scholar
  3. Brase, J.: Datacite—a global registration agency for research data. In: Fourth International Conference on Cooperation and Promotion of Information Resources in Science and Technology, COINFO’09, 2009, pp. 257–261. IEEE (2009)Google Scholar
  4. Greuel, G.M., Sperber, W.: swMATH—an information service for mathematical software. In: Hong H., Yap C. (eds.) Proceedings of 4th International Congress on Mathematical Software—ICMS 2014, Seoul, South Korea, 5–9 Aug 2014, pp. 691–701. Springer, Berlin (2014)Google Scholar
  5. Jerome, J.W.: Analysis of Charge Transport. A Mathematical Study of Semiconductor Devices. Springer, Berlin (1996)CrossRefGoogle Scholar
  6. Kohlhase, M.: OMDoc—An Open Markup Format for Mathematical Documents [Version 1.2]. No. 4180 in LNAI. Springer (2006). http://omdoc.org/pubs/omdoc1.2.pdf. Accessed 13 Sep 2017
  7. Kohlhase, M.: Using Open image in new window as a Semantic Markup Format. Math. Comput. Sci. 2(2), 279–304 (2008). https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
  8. Kohlhase, M., Koprucki, T., Müller, D., Tabelow, K.: Mathematical models as research data via flexiformal theory graphs. In: Geuvers H., England M., Hasan O., Rabe F., Teschke O. (eds.) Proceedings of 10th International Conference on Intelligent Computer Mathematics, CICM 2017, Lecture Notes in Artificial Intelligence, Edinburgh, UK, 17–21 July 2017, vol. 10383, pp. 224–238. Springer International Publishing, Cham (2017).  https://doi.org/10.1007/978-3-319-62075-6_16
  9. Koprucki, T., Tabelow, K.: Mathematical models: a research data category? In: Greuel G.M., Koch T., Paule P., Sommese A. (eds.) Proceedings of 5th International Conference on Mathematical Software—ICMS 2016, Lecture Notes in Computer Science, Berlin, Germany, 11–14 July 2016, vol. 9725, pp. 423–428. Springer International Publishing, Cham (2016).  https://doi.org/10.1007/978-3-319-42432-3_53
  10. Koprucki, T., Tabelow, K., Kleinod, I.: Mathematical research data. PAMM 16(1), 959–960 (2016).  https://doi.org/10.1002/pamm.201610458 CrossRefzbMATHGoogle Scholar
  11. Piprek, J. (ed.): Handbook of Optoelectronic Device Modeling and Simulation. Series in Optics and Optoelectronics. CRC Press, Boca Raton (2017a)Google Scholar
  12. Piprek, J.: NUSOD Blog: How to Get Your Simulation Paper Accepted (2017b). https://nusod.wordpress.com/2017/01/04/how-to-get-your-simulation-paper-accepted/. Accessed 30 March 2017
  13. Rabe, F.: The MMT API: a generic MKM system. In: Carette J., Aspinall D., Lange C., Sojka P., Windsteiger W. (eds.) Intelligent Computer Mathematics, No. 7961 in Lecture Notes in Computer Science, pp. 339–343. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-39320-4
  14. Rabe, F., Kohlhase, M.: A scalable module system. Inf Comput 230, 1–54 (2013). http://kwarc.info/frabe/Research/mmt.pdf
  15. Razum, M., Neumann, J., Hahn, M.: Radar-Ein Forschungsdaten-Repositorium als Dienstleistung für die Wissenschaft. Zeitschrift für Bibliothekswesen und Bibliographie 61(1), 18–27 (2014)CrossRefGoogle Scholar
  16. Rupprecht, M., Kohlhase, M., Müller, D.: A flexible, interactive theory-graph viewer. In: Kohlhase A., Pollanen M. (eds.) 12th Workshop on Mathematical User Interfaces, MathUI 2017 (2017). http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
  17. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)CrossRefGoogle Scholar
  18. Stodden, V., Borwein, J., Bailey, D.: Setting the default to reproducible: reproducibility in computational and experimental mathematics. SIAM News 46, 4–6 (2013)Google Scholar
  19. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci Data 3, 160018 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Weierstrass Institute (WIAS)BerlinGermany
  2. 2.InformatikFAU Erlangen-NürnbergErlangenGermany
  3. 3.Jacobs University BremenBremenGermany

Personalised recommendations