Advertisement

Computational analysis of hybrid perovskite on silicon 2-T tandem solar cells based on a Si tunnel junction

  • Alain RollandEmail author
  • Laurent Pedesseau
  • Mickaël Kepenekian
  • Claudine Katan
  • Yong Huang
  • Shijian Wang
  • Charles Cornet
  • Olivier Durand
  • Jacky Even
Article
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices

Abstract

In this study, the optoelectronic properties of a monolithically integrated 2 terminals tandem solar cell are simulated with a particular emphasis on the role of a tunnel junction in silicon. Following the large success of low-cost hybrid organic–inorganic perovskites solar cells, the possibility of using perovskites as absorbers in silicon based tandem solar cells is estimated. The top sub-cell consists in methyl ammonium mixed bromide-iodide lead perovskite, CH3NH3PbI3(1−x)Br3x (0 ≤ x ≤ 1), while the bottom sub-cell is made by a single-crystalline silicon bottom sub-cell. A Si-based tunnel junction is used to connect the two sub-cells in series. Numerical simulations are based on a one-dimensional numerical drift–diffusion model. It is shown that a perovskite layer with 20% of bromide and a thickness in the range of 300–400 nm can afford current matching with the silicon bottom cell. Good interconnection between single cells is ensured by standard n and p doping levels beyond 5 × 1019 cm−3 in the tunnel junction. A maximum efficiency of 27% is predicted for the tandem cell, which exceeds the efficiencies of the individual solar cells of silicon (17.3%) and perovskite (17.9%).

Keywords

Perovskites Tandem solar cells Tunnel junction Monolithic integration on silicon 

Notes

Acknowledgements

The work in France was supported by Agence Nationale pour la Recherche (TRANSHYPERO and SUPERSANSPLOMB ANR projects). The work performed at FOTON and ISCR has received funding from the European Union’s Horizon 2020 program, through a FET Open research and innovation action under the grant agreement No 687008.

References

  1. Albrecht, S., Saliba, M., Correa Baena, J.P., Lang, F., Kegelmann, L., Mews, M., Steier, L., Abate, A., Rappich, J., Korte, L., Schlatmann, R., Nazeeruddin, M.K., Hagfeldt, A., Grätzel, M., Rech, B.: Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016)CrossRefGoogle Scholar
  2. Almosni, S., Robert, C., Nguyen, Thanh T., Cornet, C., Létoublon, A., Quinci, T., Levallois, C., Perrin, M., Kuyyalil, J., Pedesseau, L., Balochi, A., Barate, P., Even, J., Jancu, J.M., Bertru, N., Marie, X., Durand, O., Le Corre, A.: Evaluation of InGaPN and GaAsPN materiels lattice-matched to Si for multijunction solar cells. JAP 113, 1–16 (2013)Google Scholar
  3. Bailie, C.D., Christoforo, M.G., Mailoa, J.P., Bowring, A.R., Unger, E.L., Nguyen, W.H., Burschka, J., Pellet, N., Lee, J.Z., Grätzel, M., Noufi, R., Buoassi, T., Salleo, A., McGehee, M.D.: Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956–963 (2015)CrossRefGoogle Scholar
  4. Ball, J.M., Stranks, S.D., Hörantner, M.T., Hüttner, S., Zhang, W., Crossland, E.J.W., et al.: Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015)CrossRefGoogle Scholar
  5. Baudrit, M., Algora, C.: Modeling of GaInP/GaAs dual-junction solar cells including Tunnel Junction. In: 33rd IEEE Photovoltaic Specialists Conference 2008 PVSC ‘08, pp. 1–5 (2008)Google Scholar
  6. Baudrit, M., Algora, C.: Tunnel diode modeling, including nonlocal trap-assisted tunneling: a focus on III–V multijunction solar cell simulation. IEEE Trans. Electron Devices 57, 2564–2571 (2010)ADSCrossRefGoogle Scholar
  7. Blancon, J.C., Tsai, H., Nie, W., Stoumpos, C., Pedesseau, L., Katan, C., Kepenekian, M., Soe, C.M.M., Appavoo, K., Sfeir, M.Y., Tretiak, S., Ajayan, P.M., Kanatzidis, M.G., Even, J., Crochet, J.J., Mohite, A.D.: Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017)ADSCrossRefGoogle Scholar
  8. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., et al.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)ADSCrossRefGoogle Scholar
  9. Bush, K., Palstrom, A.F., Zhengshan, J.Y., Boccard, M., Cheacharoen, R., Mailoa, J.P., McMeekin, D.P., Hoye, R.L.Z., Bailie, C.D., Leijtens, T., Peters, I.M., Minichetti, M.C., Rolston, N., Prasanna, R., Sofia, S., Harwood, D., Ma, W., Moghadam, F., Snaith, H.J., Buonassisi, T., Holman, Z.C., Bent, S.F., McGehee, M.D.: 23.6%-efficient monolithic porovskite/silicon tandem solar celles with improved stability, Nature. Energy 2, 1–7 (2017)Google Scholar
  10. Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., et al.: Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014)CrossRefGoogle Scholar
  11. Chen, S., Zhu, L., Yoshita, M., Mochizuki, T., Kim, C., Akiyama, H., et al.: Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements. Sci. Rep. 5, 7836 (2015)Google Scholar
  12. Coutts, T.J., Emery, K.A., Scott, Ward J.: Modeled performance of polycrystalline thin-film tandem solar cells. Prog. Photovolt. Res. Appl. 10, 195–203 (2002)CrossRefGoogle Scholar
  13. Dimroth, F.: High-efficiency solar cells from III–V compound semiconductors. Phys. Status Solidi C 3, 373–379 (2006)ADSCrossRefGoogle Scholar
  14. Dimroth, F., Grave, M., Beutel, P., Fiedeler, U., Karcher, C., Tibbits, T.N.D., et al.: Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. Res. Appl. 22, 277–282 (2014)CrossRefGoogle Scholar
  15. Durand, O., Almosni, S., Ping Wang, Y., Cornet, C., Létoublon, A., Robert, C., Levallois, C., Pedesseau, L., Rolland, E.J., Jancu, B.N., Le Corre, A., Mandorlo, F., Lemiti, M., Rale, P., Lombez, L., Guillemoles, J.-F., Laribi, S., Ponchet, A., Stodolna, J.: Monolithic integration of diluted-nitride III–V–N compounds on silicon substrates: toward the III–V/Si Concentrated Photovoltaics. Energy Harvest. Syst. 1(3–4), 147–156 (2014).  https://doi.org/10.1515/ehs-2014-0008. (Special Issue Article. ISSN (Online) 2329-8766, ISSN 2329-8774) Google Scholar
  16. Esaki, L.: New phenomenon in narrow germanium p–n junctions. Phys. Rev. 109, 603–604 (1958)ADSCrossRefGoogle Scholar
  17. Filipič, M., Löper, P., Niesen, B., De Wolf, S., Krč, J., Ballif, C., et al.: CH3NH3PbI3 perovskite–silicon tandem solar cells: characterization based optical simulations. Opt. Express 23, A263–A278 (2015)CrossRefGoogle Scholar
  18. Friedman, D.J.: Progress and challenges for next-generation high-efficiency multijunction solar cells. Curr. Opin. Solid State Mater. Sci. 14, 131–138 (2010)ADSCrossRefGoogle Scholar
  19. Geisz, J.F., Friedman, D.J.: III–N–V semiconductors for solar photovoltaic applications. Semicond. Sci. Technol. 17, 769–777 (2002)ADSCrossRefGoogle Scholar
  20. Geisz, J.F., Friedman, D.J., Ward, J.S., Duda, A., Olavarria, W.J., Moriarty, T.E., et al.: 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl. Phys. Lett. 93, 1–3 (2008)CrossRefGoogle Scholar
  21. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., Ho-Baillie, W.Y.: Solar cell efficiency tables. Prog. Photovoltaics Res. Appl. 25, 333–334 (2016)CrossRefGoogle Scholar
  22. Hirst, L.C., Ekins-Daukes, N.J.: Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19, 286–293 (2011)CrossRefGoogle Scholar
  23. Hörantner, M.T., Snaith, H.: Predincting and optimizing the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. (2017).  https://doi.org/10.1039/c7ee01232b. (accepted manuscript) Google Scholar
  24. Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., Park, N.-G.: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014)ADSCrossRefGoogle Scholar
  25. Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., et al.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)ADSCrossRefGoogle Scholar
  26. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  27. Kurtz, S.R., Faine, P., Olson, J.M.: Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter. J. Appl. Phys. 68, 1890–1895 (1990)ADSCrossRefGoogle Scholar
  28. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)ADSCrossRefGoogle Scholar
  29. Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)ADSCrossRefGoogle Scholar
  30. Loper, P., Niesen, B., Moon, S.-J., MartindeNicolas, S., Holovsky, J., Remes, Z., et al.: Organic-inorganic halide perovskites: perspectives for silicon-based tandem solar cells. IEEE J. Photovolt. 4, 1545–1551 (2014)CrossRefGoogle Scholar
  31. Loper, P., Moon, S.J., Martin de Nicolas, S., Niesen, B., Ledinsky, M., Nicolay, S., Bailat, J., Yum, J.H., De Wolf, S., Ballif, C.: Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys. 17, 1619–1629 (2015)CrossRefGoogle Scholar
  32. Mailoa, J.P., Bailie, C.D., Johlin, E.C., Hoke, E.T., Akey, A.J., Nguyen, W.H., et al.: A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 1–4 (2015)CrossRefGoogle Scholar
  33. Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., et al.: Achievement of more than 25%; conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014)CrossRefGoogle Scholar
  34. Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116, 1–6 (2014)CrossRefGoogle Scholar
  35. Minemoto, T., Murata, M.: Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2015)CrossRefGoogle Scholar
  36. Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)ADSCrossRefGoogle Scholar
  37. Rolland, A., Pedesseau, L., Even, J., Almosni, S., Robert, C., Cornet, C., et al.: Design of a lattice-matched III–V–N/Si photovoltaic tandem cell monolithically integrated on silicon substrate. Opt. Quantum Electron. 46, 1397–1403 (2014)CrossRefGoogle Scholar
  38. Sadhanala, A., Deschler, F., Thomas, T.H., Dutton, S.E., Goedel, K.C., Hanush, F.C., Lai, M.L., Steiner, U., Bein, T., Docampo, P., Cahen, D., Friend, R.H.: Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. lett. 5(15), 2501–2505 (2014)CrossRefGoogle Scholar
  39. Sheng, R., Ho-Baillie, A., Huang, S., Chen, S., Wen, X., Hao, X., et al.: Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C 119, 3545–3549 (2015)CrossRefGoogle Scholar
  40. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)ADSCrossRefGoogle Scholar
  41. Silvaco Inc.: ATLAS User’s Manual. Sunnyvale, CA (2012) http://silvaco.com
  42. Snaith, H.J.: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)CrossRefGoogle Scholar
  43. Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., et al.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)ADSCrossRefGoogle Scholar
  44. Tsai, H., Nie, W., Blancon, J.-C., Stoumpos, C.C., Asadpour, R., Harutyunyan, B., Neukirch, A.J., Verduzco, R., Crochet, J.J., Tretiak, S., Pedesseau, L., Even, J., Alam, M.A., Gupta, G., Lou, J., Ajayan, P.M., Bedzyk, M.J., Kanatzidis, M.G., Mohite, A.D.: High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016)ADSCrossRefGoogle Scholar
  45. Yang, W., Yao, Y., Wu, C.-Q.: Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: a macroscopic perspective. J. Appl. Phys. 117, 1–10 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Alain Rolland
    • 1
    Email author
  • Laurent Pedesseau
    • 1
  • Mickaël Kepenekian
    • 2
  • Claudine Katan
    • 2
  • Yong Huang
    • 1
  • Shijian Wang
    • 1
  • Charles Cornet
    • 1
  • Olivier Durand
    • 1
  • Jacky Even
    • 1
  1. 1.INSA de Rennes, UMR 6082, CNRSFonctions Optiques pour les Technologies de l’Information (FOTON)RennesFrance
  2. 2.CNRS, Ecole Nationale Supérieure de Chimie de Rennes, INSA de Rennes, UMR 6226Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes 1RennesFrance

Personalised recommendations