Advertisement

Signature of the ideality factor in III-nitride multi quantum well light emitting diodes

  • Friedhard Römer
  • Bernd Witzigmann
Article
  • 184 Downloads
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices

Abstract

The ideality factor in recent III-nitride light emitting diodes (LED) is expected to approach values close to \(\eta \approx 1\) near the maximum of the internal quantum efficiency (IQE) because the bimolecular recombination dominates there. However, the electrical characterisation of multi quantum well (MQW) LEDs often yields values which are more close to \(\eta \approx 2\) or even more. To analyse the effect of the MQW on the ideality factor we derive an electrical model based on lumped circuit elements. By comparing the model results with the physical simulations of the ideality factor we demonstrate its validity. The detailed analysis of the circuit elements reveals that the electron scattering has a major impact on the ideality factor near the maximum of the IQE. We show that the ideality factor presents a signature for the hole injection efficiency and thus can be used to estimate the IQE characteristic in the high current regime.

Keywords

Light emitting diode III-Nitride Multi quantum well Ideality factor Carrier transport simulation 

References

  1. Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., Eastman, L.F.: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter 14(13), 3399–3434 (2002).  https://doi.org/10.1088/0953-8984/14/13/302 ADSCrossRefGoogle Scholar
  2. Auf der Maur, M., Galler, B., Pietzonka, I., Strassburg, M., Lugauer, H., Di Carlo, A.: Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes. Appl. Phys. Lett. 105(13), 133504 (2014).  https://doi.org/10.1063/1.4896970 ADSCrossRefGoogle Scholar
  3. Baraff, G.: Semiclassical description of electron transport in semiconductor quantum-well devices. Phys. Rev. B 55(16), 10745–10753 (1997)ADSCrossRefGoogle Scholar
  4. Binder, M., Galler, B., Furitsch, M., Off, J., Wagner, J., Zeisel, R., Katz, S.: Investigations on correlation between IV characteristic and internal quantum efficiency of blue (AlGaIn)N light-emitting diodes. Appl. Phys. Lett. 103(22), 221110 (2013).  https://doi.org/10.1063/1.4833895 ADSCrossRefGoogle Scholar
  5. Brochen, S., Brault, J., Chenot, S., Dussaigne, A., Leroux, M., Damilano, B.: Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy. Appl. Phys. Lett. 103(3), 032102 (2013).  https://doi.org/10.1063/1.4813598 ADSCrossRefGoogle Scholar
  6. Cho, J., Schubert, E.F., Kim, J.K.: Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser. Photon. Rev. 7(3), 408–421 (2013).  https://doi.org/10.1002/lpor.201200025 ADSCrossRefGoogle Scholar
  7. David A., Hurni C.A., Young N.G., Craven M.D.: Electrical properties of III-nitride LEDs: recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling. Appl. Phys. Lett. 109(8), 083501 (2016).  https://doi.org/10.1063/1.4961491 ADSCrossRefGoogle Scholar
  8. Ferry, D., Ramey, S., Shifren, L., Akis, R.: The effective potential in device modeling: the good, the bad and the ugly. J. Comput. Electron. 1(1/2), 59–65 (2002).  https://doi.org/10.1023/A:1020763710906 CrossRefGoogle Scholar
  9. Galler, B., Laubsch, A., Wojcik, A., Lugauer, H., Gomez-Iglesias, A., Sabathil, M., Hahn, B.: Investigation of the carrier distribution in InGaN-based multi-quantum-well structures. Phys. Status Solidi C 8(7–8), 2372–2374 (2011).  https://doi.org/10.1002/pssc.201001075 ADSCrossRefGoogle Scholar
  10. Grupen, M., Hess, K.: Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J. Quantum Electron. 34(1), 120–140 (1998).  https://doi.org/10.1109/3.655016 ADSCrossRefGoogle Scholar
  11. Han, D.P., Shim, J.-I., Shin, D.S., Kim, K.S.: Effects of unbalanced carrier injection on the performance characteristics of InGaN light-emitting diodes. Appl. Phys. Express 9(8), 081002 (2016).  https://doi.org/10.7567/APEX.9.081002 ADSCrossRefGoogle Scholar
  12. Kioupakis, E., Yan, Q., Van de Walle, C.G.: Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. Appl. Phys. Lett. 101(23), 231107 (2012).  https://doi.org/10.1063/1.4769374 ADSCrossRefGoogle Scholar
  13. Masui, H.: Diode ideality factor in modern light-emitting diodes. Semicond. Sci. Technol. 26(7), 075011 (2011).  https://doi.org/10.1088/0268-1242/26/7/075011 ADSCrossRefGoogle Scholar
  14. Okada, N., Tadatomo, K., Yamane, K., Mangyo, H., Kobayashi, Y., Ono, H., Ikenaga, K., Yano, Y., Matsumoto, K.: Performance of InGaN/GaN light-emitting diodes grown using NH3 with oxygen-containing impurities with oxygen-containing impurities. Jpn. J. Appl. Phys. 53(8), 081001 (2014).  https://doi.org/10.7567/Jjap.53.081001 ADSCrossRefGoogle Scholar
  15. Park, S.H., Chuang, S.L.: Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B 59(7), 4725–4737 (1999).  https://doi.org/10.1103/PhysRevB.59.4725 ADSCrossRefGoogle Scholar
  16. Piprek, J., Li, Z.M.S.: Sensitivity analysis of electron leakage in III-nitride light-emitting diodes. Appl. Phys. Lett. 102(13), 131103 (2013).  https://doi.org/10.1063/1.4799672 ADSCrossRefGoogle Scholar
  17. Römer, F., Witzigmann, B.: Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs. Opt. Express 22(S6), A1440–A1452 (2014).  https://doi.org/10.1364/OE.22.0A1440 ADSCrossRefGoogle Scholar
  18. Römer, F., Witzigmann, B.: Effect of oxygen impurities in semipolar III-nitride light emitting diodes. Phys. Status Solidi A 214(1), 1600297 (2017a).  https://doi.org/10.1002/pssa.201600297 ADSCrossRefGoogle Scholar
  19. Römer, F., Witzigmann, B.: Luminescence distribution in the multi-quantum well region of III-nitride light emitting diodes. In: Proceedings of SPIE, vol. 10124, p. 101240Y (2017b).  https://doi.org/10.1117/12.2253668
  20. Sabathil, M., Laubsch, A., Linder, N.: Self-consistent modeling of resonant PL in InGaN SQW LED-structure. In: Proceedings of SPIE, vol. 6486, p. 64860V (2007).  https://doi.org/10.1117/12.700461
  21. Shedbalkar, A., Andreev, Z., Witzigmann, B.: Simulation of an indium gallium nitride quantum well light-emitting diode with the non-equilibrium Green’s function method. Phys. Status Solidi B 253(1), 158–163 (2016).  https://doi.org/10.1002/pssb.201552276 ADSCrossRefGoogle Scholar
  22. Sun, W., Tan, C.K., Tansu, N.: III-Nitride digital alloy: electronics and optoelectronics properties of the InN/GaN ultra-short period superlattice nanostructures. Sci. Rep. 7(1), 6671 (2017).  https://doi.org/10.1038/s41598-017-06889-3 ADSCrossRefGoogle Scholar
  23. Xu, J., Schubert, M.F., Noemaun, A.N., Kim, J.K., Schubert, E.F., Kim, M.H., Chung, H.J., Yoon, S., Sone, C., Park, Y.: Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes. Appl. Phys. Lett. 94(1), 011113 (2009).  https://doi.org/10.1063/1.3058687 ADSCrossRefGoogle Scholar
  24. Zakheim, D.A., Pavluchenko, A.S., Bauman, D.A., Bulashevich, K.A., Khokhlev, O.V., Karpov, S.Y.: Efficiency droop suppression in InGaN-based blue LEDs: experiment and numerical modelling. Phys. Status Solidi A 209(3), 456–460 (2012).  https://doi.org/10.1002/pssa.201100317 ADSCrossRefGoogle Scholar
  25. Zhu, D., Xu, J., Noemaun, A.N., Kim, J.K., Schubert, E.F., Crawford, M.H., Koleske, D.D.: The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 94(8), 081113 (2009).  https://doi.org/10.1063/1.3089687 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of KasselKasselGermany

Personalised recommendations