Graphene-based Mach–Zehnder nanophotonics interferometer working as a splitter/switch and as a multiplexer/demultiplexer

  • A. Wirth LimaJr.Email author
  • A. S. B. Sombra


We developed and are presenting a graphene-based nanophotonic Mach–Zehnder Interferometer (MZI), which can operate as a signal follower, switch and splitter and as a multiplexer/demultiplexer. Due to the excellent electrical/optical parameters inherent to the graphene, we showed that the device we are presenting can works in several different ways, which can not be supported by MZI based on conventional materials. It is worth mentioning that the operations of the device we have developed take into account the electrical/optical parameters of the graphene, which provide greater versatility and efficiency compared to the MZIs manufactured with conventional materials. In addition, these parameters can be controlled via, for example, gate voltage, so that many operations can be performed in parallel, which is also not possible through the use of conventional materials. Due to its manometric dimensions, this MZI can be integrated within photonic integrated circuits, so that we can use this device in dense wavelength division multiplexing optical communications.


Demultiplexer Graphene Multiplexeer MZI Switch Splitter 



This work was partly sponsored by the National Council for Scientific and Technological Development (CNPq). To Prof. Dr. Victor Dmitriev Alexandrovic, (UFPA) for calculations using the COMSOL.


  1. Adam, S., Hwang, E.H., Galitski, V., Das Sarma, S.: A self-consistent theory for graphene transport. Appl. Phys. Sci. 104(47), 18392–18397 (2007)Google Scholar
  2. Agrawal, G.P.: Nonlinear Fiber Optics, 2nd edn. Academic Press (1995). ISBN 0-12-045142-5Google Scholar
  3. Ando, T.: Screening effect and impurity scattering in monolayer graphene. J. Phys. Soc. Jpn. 75, 074716 (2006)ADSCrossRefGoogle Scholar
  4. Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012)CrossRefGoogle Scholar
  5. Barnes, W.L.: Surface plasmon–polariton length scales: a route to sub-wavelength optics. J. Opt. A Pure Appl. Opt. 8, S87–S93 (2006)ADSCrossRefGoogle Scholar
  6. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)ADSCrossRefGoogle Scholar
  7. Cheng, Z., Tsang, H.K., Wang, X., Wong, C.Y., Chen, X., Xu, K, Shi, Z., Xu, J.B.: Polarization Dependent Loss and All-Optical Modulation in Graphene on Suspended Membrane Waveguides. Cornell University Library (2012). arXiv:1211.5946v1
  8. Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F.H.L., de Abajo, F.J.G.: Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1), 431–440 (2012)CrossRefGoogle Scholar
  9. de Ridder, R.M., Roelloffzen, C.G.H.: Interleavers. In: Venghaus, H. (ed.) Wavelength Filters for Fibre Optics. Springer Series in Optical Sciences, vol. 123, pp. 381–432 (2006). ISBN 3-540-31769-4Google Scholar
  10. Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)ADSCrossRefGoogle Scholar
  11. Dwivedi, S., De Heyn, P., Absil, P., Van Campenhout, J., Bobaerts, W.: Coarse wavelength division multiplexer on silicon-on-insulator for 100 GbE. In: Group IV Photonics, IEEE 12th International Conference (2015).
  12. Falkovsky, L.A., Pershoguba, S.S.: Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007)ADSCrossRefGoogle Scholar
  13. Gan, C.H., Chu, H.S., Li, E.P.: Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies. Phys. Rev. B 85, 125431–125439 (2012)ADSCrossRefGoogle Scholar
  14. García de Abajo, F.J.: Graphene plasmonics: challenges and opportunities. ACS Phot. 1(3), 135–152 (2014)CrossRefGoogle Scholar
  15. He, S., Zhang, X., He, Y.: Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt. Express 21(25), 30664–30673 (2013)ADSCrossRefGoogle Scholar
  16. Katsnelson, M.I., Geim, A.K.: Electron sacttering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A 366, 195–204 (2007)ADSCrossRefGoogle Scholar
  17. Kim, D.W., Barkai, A., Jones, R., Elek, N., Nguyen, H., Liu, A.: Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach–Zehnder interferometers. Opt. Lett. 33(5), 530–532 (2008)ADSCrossRefGoogle Scholar
  18. Koppens, F.H.L., Chang, D.E., García de Abajo, F.J.: Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011)ADSCrossRefGoogle Scholar
  19. Mikhailov, S.A., Ziegler, K.: New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007)ADSCrossRefGoogle Scholar
  20. Murray, W.A., Barnes, W.L.: Plasmonic materials. Adv. Mater. 19, 3771–3782 (2007)CrossRefGoogle Scholar
  21. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)ADSCrossRefGoogle Scholar
  22. Nanotubes and Nanosheets. CRC Press, Taylor and Francis Group (2005). ISBN: 13:978-1-4665-9810-2Google Scholar
  23. Park, Ch-H, Giustino, F., Cohen, M.L., Louie, S.G.: Velocity renormalization and carrier lifetime in graphene from the electron–phonon interaction. Phys. Rev. Lett. 99, 086804 (2007)ADSCrossRefGoogle Scholar
  24. Raj, A.K., Sundari, B.T.B.: Compact graphene field effect transistor modeling with quantum capacitance effects. ARPN J. Eng. Appl. Sci 11(2), 1347–1351 (2016)Google Scholar
  25. Recommendation ITU-T G.671: Series G: transmission systems and media digital systems and networks (2012)Google Scholar
  26. Sámson, Z.L., Horak, P., MacDonald, K.F., Zheludev, N.I.: Femtosecond surface plasmon pulse propagation. Opt. Lett. 36(2), 250–252 (2011)ADSCrossRefGoogle Scholar
  27. Thongrattanasiri, S., Manjavacas, A., García de Abajo, F.J.: Quantum finite-size effects in graphene plasmons. ACS Nano 6, 1766–1775 (2012)CrossRefGoogle Scholar
  28. Vakil, A., Engheta, N.: One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene. Cornell University Library (2011). arXiv:1101.3585v1
  29. Wang, H., Taychatanapat, T., Hsu, A., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., Palacios, T.: BN/graphene/BN transistors for RF applications. IEEE Electron Device Lett. 32(9), 1209–1211 (2011)ADSCrossRefGoogle Scholar
  30. Wang, B., Zhang, X., Yuan, X., Teng, J.: Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100, 131111 (2012)ADSCrossRefGoogle Scholar
  31. Zan, R, Ramasse, Q.M., Jadil, R., Bangert, U.: Advances in Graphene Science. InTech. Chapter 1 (2013). ISBN 978-953-51-1182-5Google Scholar
  32. Zhang, H., Virally, S., Bao, Q., Loh, K.P., Massar, S., Godbout, N., Kockaert, P.: Large Nonlinear Kerr Effect in Graphene (2012). arXiv:1203.5527v1
  33. Zhu, X., Yan, W., Mortensen, N.A., Xiao, S.: Bends and splitters in graphene nanoribbon waveguides. Opt. Express 21(3), 3486–3491 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Telecommunications and Materials Science and EngineeringFortalezaBrazil
  2. 2.Department of Physics, Science CenterFederal University of Ceará (U.F.C.)FortalezaBrazil

Personalised recommendations