Advertisement

Efficient coupling of the inhomogeneous current spreading model to the dynamic electro-optical solver for broad-area edge-emitting semiconductor devices

  • Mindaugas Radziunas
  • Anissa Zeghuzi
  • Jürgen Fuhrmann
  • Thomas Koprucki
  • Hans-Jürgen Wünsche
  • Hans Wenzel
  • Uwe Bandelow
Article
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices

Abstract

We extend a 2 (space) + 1 (time)-dimensional traveling wave model for broad-area edge-emitting semiconductor lasers by a model for inhomogeneous current spreading from the contact to the active zone of the laser. To speedup the performance of the device simulations, we suggest and discuss several approximations of the inhomogeneous current density in the active zone.

Keywords

Broad area lasers Modeling Traveling wave Inhomogeneous current spreading Laplace problem Separation of variables Finite volumes Effective implementation 

Notes

Acknowledgements

This work is supported by the German Federal Ministry of Education and Research contract 13N14005 as part of the EffiLAS/HotLas project.

References

  1. BALaser: A software tool for simulation of dynamics in broad area semiconductor lasers. http://www.wias-berlin.de/software/balaser/ (2017)
  2. Diehl, R.: High-Power Diode Lasers: Fundamentals, Technology, Applications. Springer, Berlin (2000)CrossRefGoogle Scholar
  3. Joyce, W.B.: Carrier transport in double-heterostructure active layers. J. Appl. Phys. 53(11), 7235–7239 (1982)ADSCrossRefGoogle Scholar
  4. Joyce, W.B., Dixon, R.W.: Analytic approximations for the Fermi energy of an ideal Fermi gas. Appl. Phys. Lett. 31(5), 354–356 (1977)ADSCrossRefGoogle Scholar
  5. pdelib: A finite volume and finite element toolbox for PDEs. http://www.wias-berlin.de/software/pdelib/ (2017)
  6. Radziunas, M.: Modeling and simulations of broad-area edge-emitting semiconductor devices. Int. J. High Perf. Comp. Appl. 1–11 (2016). doi: 10.1177/1094342016677086
  7. Radziunas, M., Čiegis, R.: Effective numerical algorithm for simulations of beam stabilization in broad area semiconductor lasers and amplifiers. Math. Model. Anal. 19, 627–644 (2014)MathSciNetCrossRefGoogle Scholar
  8. Radziunas, M., Herrero, R., Botey, M., Staliunas, K.: Far field narrowing in spatially modulated broad area edge-emitting semiconductor amplifiers. J. Opt. Soc. Am. B 32(5), 993–1000 (2015)ADSCrossRefGoogle Scholar
  9. Spreemann, M., Lichtner, M., Radziunas, M., Bandelow, U., Wenzel, H.: Measurement and simulation of distributed-feedback tapered master-oscillators power-amplifiers. IEEE J. Quantum Electron. 45, 609–616 (2009)ADSCrossRefGoogle Scholar
  10. Wenzel, H.: Basic aspects of high-power semiconductor laser simulation. IEEE J. Select. Topics Quantum Electron. 19, 1–13 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Weierstrass InstituteBerlinGermany
  2. 2.Ferdinand-Braun-Institut, Leibniz Institut für HöchstfrequenztechnikBerlinGermany

Personalised recommendations