3D electrothermal simulations of organic LEDs showing negative differential resistance

  • Matthias LieroEmail author
  • Jürgen Fuhrmann
  • Annegret Glitzky
  • Thomas Koprucki
  • Axel Fischer
  • Sebastian Reineke
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices


Organic semiconductor devices show a pronounced interplay between temperature-activated conductivity and self-heating which in particular causes inhomogeneities in the brightness of large-area OLEDs at high power. We consider a 3D thermistor model based on partial differential equations for the electrothermal behavior of organic devices and introduce an extension to multiple layers with nonlinear conductivity laws, which also take the diode-like behavior in recombination zones into account. We present a numerical simulation study for a red OLED using a finite-volume approximation of this model. The appearance of S-shaped current–voltage characteristics with regions of negative differential resistance in a measured device can be quantitatively reproduced. Furthermore, this simulation study reveals a propagation of spatial zones of negative differential resistance in the electron and hole transport layers toward the contact.


Organic semiconductors Self-heating Negative differential resistance p-Laplacian Thermistor model Hybrid finite-volume/finite-element scheme 



This work received funding via the Research Center matheon supported by ECMath in projects D-SE2 and D-SE18, the DFG CRC 787 "Semiconductor Nanophotonics", and it was supported in part by the DFG within the Cluster of Excellence Center for Advancing Electronics Dresden (cfaed) and the DFG project EFOD (RE 3198/6-1).


  1. Bässler, H., Köhler, A.: Charge transport in organic semiconductors. In: Metzger, R.M. (ed.) Unimolecular and Supramolecular Electronics I, pp. 1–65. Springer, Berlin (2011)Google Scholar
  2. Bradji, A., Herbin, R.: Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods. IMA J. Numer. Anal. 28(3), 469–495 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bulíček, M., Glitzky, A., Liero, M.: Systems describing electrothermal effects with \(p(x)\)-Laplace like structure for discontinuous variable exponents. SIAM J. Math. Anal. 48, 3496–3514 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Fischer, A., Pahner, P., Lüssem, B., Leo, K., Scholz, R., Koprucki, T., Gärtner, K., Glitzky, A.: Self-heating, bistability, and thermal switching in organic semiconductors. Phys. Rev. Lett. 110, 126,601/1–126,601/5 (2013)Google Scholar
  5. Fischer, A., Koprucki, T., Gärtner, K., Brückner, J., Lüssem, B., Leo, K., Glitzky, A., Scholz, R.: Feel the heat: nonlinear electrothermal feedback in organic LEDs. Adv. Funct. Mater. 24, 3367–3374 (2014)CrossRefGoogle Scholar
  6. Fuhrmann, J., Glitzky, A., Liero, M.: Hybrid finite-volume/finite-element schemes for \(p(x)\)-Laplace thermistor models. In: Cancès, C., Omnes, P. (eds.) Finite Volumes for Complex Applications VIII—Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017, pp. 397–405. Springer, Cham (2017)CrossRefGoogle Scholar
  7. Glitzky, A., Liero, M.: Analysis of \(p(x)\)-Laplace thermistor models describing the electrothermal behavior of organic semiconductor devices. Nonlinear Anal. Real World Appl. 34, 536–562 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Kirsch, C., Altazin, S., Hiestand, R., Beierlein, T., Ferrini, R., Offermans, T., Penninck, L., Ruhstaller, B.: Electrothermal simulation of large-area semiconductor devices. Int. J. Multiphys. 11(2), 127–136 (2017)Google Scholar
  9. Kordt, P., van der Holst, J.J., Al, Helwi M., Kowalsky, W., May, F., Badinski, A., Lennartz, C., Andrienko, D.: Modeling of organic light emitting diodes: from molecular to device properties. Adv. Funct. Mater. 25(13), 1955–1971 (2015)CrossRefGoogle Scholar
  10. Liero, M., Koprucki, T., Fischer, A., Scholz, R., Glitzky, A.: \(p\)-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices. Z. Angew. Math. Phys. 66, 2957–2977 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Schwab, T., Schubert, S., Müller-Meskamp, L., Leo, K., Gather, M.C.: Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes. Adv. Opt. Mater. 1, 921–925 (2013)CrossRefGoogle Scholar
  12. Slawinski, M., Bertram, D., Heuken, M., Kalisch, H., Vescan, A.: Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation. Org. Electron. 12(8), 1399–1405 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Weierstrass Institute (WIAS)BerlinGermany
  2. 2.Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), TU DresdenDresdenGermany

Personalised recommendations