Internal power loss in GaN-based lasers: mechanisms and remedies

  • Joachim Piprek
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices


GaN-based laser diodes transform only a relatively small fraction of the electrical input power into laser light. The inherently large series resistance of these devices causes significant self-heating that leads to the typical power roll-off at high current. We analyze recently reported measurements using advanced numerical laser simulation and investigate the physical mechanisms that limit the lasing power in continuous-wave operation. Contrary to common expectations, our analysis reveals a strong influence of Auger recombination since the self-heating leads to a rising quantum well carrier density above the lasing threshold. As possible remedy, we investigate the effect of a tunnel-junction contact and predict a significant enhancement of lasing power and efficiency.


Laser diode InGaN/GaN Power Efficiency Auger recombination Series resistance Joule heating Hole conductivity Tunnel junction 


  1. Cantore, M., Pfaff, N., Farrell, R.M., Speck, J.S., Nakamura, S., DenBaars, S.P.: High luminous flux from single crystal phosphor-converted laser-based white lighting system. Opt. Express 24, 251040 (2015)Google Scholar
  2. Hurni, C.A., David, A., Cich, M.J., Aldaz, R.I., et al.: Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett. 106, 031101 (2015)ADSCrossRefGoogle Scholar
  3. Kawaguchi, M., Imafuji, O., Nozaki, S., Hagino, H., et al.: Optical-loss suppressed InGaN laser diodes using undoped thick waveguide structure. Proc. SPIE 9748, 974818 (2016)CrossRefGoogle Scholar
  4. Kioupakis, E., Rinke, P., Van de Walle, C.: Determination of internal loss in nitride lasers from first principles. Appl. Phys. Express 3, 082101 (2010)ADSCrossRefGoogle Scholar
  5. Nakamura, S.: Background story of the invention of efficient blue InGaN light emitting diodes (Nobel Lecture). Ann. Phys. 527, 335–349 (2015)CrossRefGoogle Scholar
  6. Nozaki, S., Yoshida, S., Yamanaka, K., Imafuji, O., et al.: High-power and high-temperature operation of an InGaN laser over 3 W at 85 °C using a novel double-heat-flow packaging technology. Jpn. J. Appl. Phys. 55, 04EH05 (2016)CrossRefGoogle Scholar
  7. Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic, San Diego (2003)Google Scholar
  8. Piprek, J.: What limits the efficiency of high-power InGaN/GaN lasers? J. Quant. Electron. 53, 2000104 (2017a)CrossRefGoogle Scholar
  9. Piprek, J.: What limits the power conversion efficiency of GaN-based lasers? Proc. SPIE 10098, 100980Q (2017b)CrossRefGoogle Scholar
  10. Piprek, J., Nakamura, S.: Physics of high-power InGaN/GaN lasers. IEE Proc. Optoelectron. 149, 145–151 (2002)CrossRefGoogle Scholar
  11. Piprek, J., Roemer, F., Witzigmann, B.: On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett. 106, 101101 (2015)ADSCrossRefGoogle Scholar
  12. Strauss, U., Somers, A., Heine, U., Wurm, T., et al.: GaInN laser diodes from 440 to 530 nm: a performance study on single mode and multi-mode R&D designs. Proc. SPIE 10123, 101230A (2017)Google Scholar
  13. Weisbuch, C., Piccardo, M., Martinelli, L., Iveland, J., Peretti, J., Speck, J.S.: The efficiency challenge of nitride light-emitting diodes for lighting. Phys. Status Solidi A 212, 899–913 (2015)ADSCrossRefGoogle Scholar
  14. Wierer, J.J., Tsao, J.Y.: Advantages of III-nitride laser diodes in solid-state lighting. Phys. Status Solidi A 212(5), 980–985 (2015)ADSCrossRefGoogle Scholar
  15. Yonkee, B.P., Young, E.C., Lee, C., Leonard, J.T., et al.: Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact. Opt. Express 24, 256556 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.NUSOD Institute LLCNewarkUSA

Personalised recommendations