Advertisement

Cancellation of Raman self-frequency shift for compression of optical pulses

  • Sabrina PickartzEmail author
  • Carsten Brée
  • Uwe Bandelow
  • Shalva Amiranashvili
Article
  • 97 Downloads
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices

Abstract

We study to which extent a fiber soliton can be manipulated by a specially chosen continuous pump wave. A group velocity matched pump scatters at the soliton, which is compressed due to the energy/momentum transfer. As the pump scattering is very sensitive to the velocity matching condition, soliton compression is quickly destroyed by the soliton self-frequency shift (SSFS). This is especially true for ultrashort pulses: SSFS inevitably impairs the degree of compression. We demonstrate numerically that soliton enhancement can be restored to some extent and the compressed soliton can be stabilized, provided that SSFS is canceled by a second pump wave. Still the available compression degree is considerably smaller than that in the Raman-free nonlinear fibers.

Keywords

Ultrashort pulses Pulse compression Soliton self-frequency shift Optical event horizons 

Mathematics Subject Classification

78A60 78M22 78-06 

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, London (2001)zbMATHGoogle Scholar
  2. Babushkin, I., Amiranashvili, S., Bree, C., Morgner, U., Steinmeyer, G., Demircan, A.: The effect of chirp on pulse compression at a group velocity horizon. IEEE Photonics J. 8(3), 1–13 (2016). doi: 10.1109/jphot.2016.2570001 CrossRefGoogle Scholar
  3. Cavalieri, A.L., Goulielmakis, E., Horvath, B., Helml, W., Schultze, M., Fie, M., Pervak, V., Veisz, L., Yakovlev, V.S., Uiberacker, M., Apolonski, A., Krausz, F., Kienberger, R.: Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua. New J. Phys. 9(7), 1–12 (2007). http://stacks.iop.org/1367-2630/9/i=7/a=242
  4. Choudhary, A., König, F.: Efficient frequency shifting of dispersive waves at solitons. Opt. Express 20(5), 5538–5546 (2012). doi: 10.1364/oe.20.005538 ADSCrossRefGoogle Scholar
  5. Cox, J.A., Putnam, W.P., Sell, A., Leitenstorfer, A., Kärtner, F.X.: Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Opt. Lett. 37(17), 3579–3581 (2012). doi: 10.1364/OL.37.003579. http://ol.osa.org/abstract.cfm?URI=ol-37-17-3579
  6. Demircan, A., Amiranashvili, S., Brée, C., Morgner, U., Steinmeyer, G.: Adjustable pulse compression scheme for generation of few-cycle pulses in the midinfrared. Opt. Lett. 39(9), 2735–2738 (2014). doi: 10.1364/OL.39.002735. http://ol.osa.org/abstract.cfm?URI=ol-39-9-2735
  7. Efimov, A., Yulin, A.V., Skryabin, D.V., Knight, J.C., Joly, N., Omenetto, F.G., Taylor, A.J., Russell, P.: Interaction of an optical soliton with a dispersive wave. Phys. Rev. Lett. (2005). doi: 10.1103/physrevlett.95.213902
  8. Faccio, D.: Laser pulse analogues for gravity and analogue hawking radiation. Contemp. Phys. 53(2), 97–112 (2012)ADSCrossRefGoogle Scholar
  9. Matsubara, E., Yamane, K., Sekikawa, T., Yamashita, M.: Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. J. Opt. Soc. Am. B 24(4), 985–989 (2007). doi: 10.1364/JOSAB.24.000985. http://josab.osa.org/abstract.cfm?URI=josab-24-4-985
  10. Philbin, T.G., Kuklewicz, C., Robertson, S., Hill, S., Konig, F., Leonhardt, U.: Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008). doi: 10.1126/science.1153625 ADSCrossRefGoogle Scholar
  11. Pickartz, S., Bandelow, U., Amiranashvili, S.: Adiabatic theory of solitons fed by dispersive waves. Phys. Rev. A (2016a). doi: 10.1103/physreva.94.033811
  12. Pickartz, S., Bandelow, U., Amiranashvili, S.: Efficient all-optical control of solitons. Opt. Quantum Electron. (2016b). doi: 10.1007/s11082-016-0760-2
  13. Pickartz, S., Bandelow, U., Amiranashvili, S.: Asymptotically stable compensation of the soliton self-frequency shift. Opt. Lett. 42(7), 1416–1419 (2017). doi: 10.1364/ol.42.001416 ADSCrossRefGoogle Scholar
  14. Skryabin, D.V., Yulin, A.V.: Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers. Phys. Rev. E (2005). doi: 10.1103/physreve.72.016619
  15. Steinmeyer, G., Stibenz, G.: Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors. Appl. Phys. B 82(2), 175–181 (2006). doi: 10.1007/s00340-005-2065-1 ADSCrossRefGoogle Scholar
  16. Tartara, L.: Soliton control by a weak dispersive pulse. J. Opt. Soc. Am. B 32(3), 395–399 (2015). doi: 10.1364/josab.32.000395 ADSCrossRefGoogle Scholar
  17. Wirth, A., Hassan, M.T., Grguraš, I., Gagnon, J., Moulet, A., Luu, T.T., Pabst, S., Santra, R., Alahmed, Z.A., Azzeer, A.M., Yakovlev, V.S., Pervak, V., Krausz, F., Goulielmakis, E.: Synthesized light transients. Science 334(6053), 195–200 (2011). doi: 10.1126/science.1210268. http://science.sciencemag.org/content/334/6053/195
  18. Yulin, A.V., Skryabin, D.V., Russell, P.S.J.: Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion. Opt. Lett. 29(20), 2411–2413 (2004). doi: 10.1364/OL.29.002411. http://ol.osa.org/abstract.cfm?URI=ol-29-20-2411

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations