Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification

  • Stefan F. Helfert
  • Thomas Seiler
  • Jürgen Jahns
  • Jing Becker
  • Peter Jakobs
  • Andreas Bacher


In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propagation algorithm where the eigenmodes are computed after a discretization in the cross-section. Due to the vectorial 3D-problem, extensions of the standard algorithm were required to keep the numerical effort low. Particularly, only a reduced set of eigenmodes is used in the computations and inverting rectangular matrices is done with the help of left eigenvectors. Further, it is shown how these left eigenvectors can be determined with simple matrix vector products, i.e., at very low numerical cost. The fabrication of the device is very demanding because of a very high ratio between the metal width and its height. Here, direct electron-beam lithography is used for this task.


Method of lines Left eigenvectors Polarization conversion Metallic nanostructures Electron beam lithography 



This work was partially carried out with support of the Karlsruhe Nano Micro Facility (KNMF,, a Helmholtz research infrastructure at Karlsruhe Institute of Technology (KIT,


  1. Bacher, W., Menz, J.M.W.: The liga technique and its potential for microsystems—a survey. IEEE Trans. Ind. Electron. 42, 431–441 (1995)CrossRefGoogle Scholar
  2. Bomzon, Z., Biener, G., Kleiner, V., Hasman, E.: Radially and azimuthally polarized beams generated by space-variant dielectric sub wavelength gratings. Opt. Lett. 27, 285–287 (2002)ADSCrossRefGoogle Scholar
  3. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1986)Google Scholar
  4. Chen, H., Wang, J., Ma, H., Zhuo, X., Zhang, A., Yan, M., Li, Y.: Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J. Appl. Phys. 115, 154504 (2014)Google Scholar
  5. Collin, R.E.: Field Theory of Guided Waves. Series of Electromagnetic Waves, 2nd edn. IEEE Press, New York (1991)zbMATHGoogle Scholar
  6. Cong, L., Cao, W., Zhang, X., Tian, Z., Gu, L., Singh, R., Han, J., Zhang, W.: A perfect metamaterial polarization rotator. Appl. Phys. Lett. 103, 171107 (2013)Google Scholar
  7. Cucinotta, A., Pelosi, G., Selleri, S., Vincetti, L., Zoboli, M.: Perfectly matched anisotropic layers for optical waveguide analysis through the finite element beam propagation method. Microw. Opt. Technol. Lett. 23, 67–69 (1999)CrossRefGoogle Scholar
  8. Gerdes, J.: Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines. Electron. Lett. 30, 550–551 (1994)ADSCrossRefGoogle Scholar
  9. Ghadyani, Z., Dmitriev, S., Lindlein, N., Leuchs, G., Rusina, O., Harder, I.: Discontinuous space variant sub-wavelength structures for generating radially polarized light in visible region. J. Eur. Opt. Soc. Rapid Publ. 6, 11041 (2011)Google Scholar
  10. Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)zbMATHGoogle Scholar
  11. Helfert, S.F.: Efficient determination of the left-eigenvectors for the method of lines. Adv. Radio Sci. 13, 19–29 (2015)ADSCrossRefGoogle Scholar
  12. Helfert, S.F., Pregla, R.: The method of lines: a versatile tool for the analysis of waveguide structures. Electromagnetics 22, 615–637 (2002)CrossRefGoogle Scholar
  13. Helfert, S.F., Jahns, J.: Structured illumination of hollow waveguide arrays using the Talbot self-imaging. In: EOS Topical Meeting on Diffractive Optics 2017 (DO2017), Oensuu, Finland (2017)Google Scholar
  14. Helfert, S.F., Barcz, A., Pregla, R.: Three-dimensional vectorial analysis of waveguide structures with the method of lines. Opt. Quantum Electron. 35, 381–394 (2003)CrossRefGoogle Scholar
  15. Helfert, S.F., Edelmann, A., Jahns, J.: Hollow waveguides as polarization converting elements: a theoretical study. J. Eur. Opt. Soc. Rapid Publ. 10, 15006 (2015)Google Scholar
  16. Jahns, J., Helfert, S.: Introduction to Micro- and Nanooptics. Wiley-VCH, Weinheim (2012)Google Scholar
  17. Kämpfe, T., Parriaux, O.: Depth-minimized, large period half-wave corrugation for linear to radial and azimuthal polarization transformation by grating-mode phase management. J. Opt. Soc. Am. A 28, 2235–2242 (2011)ADSCrossRefGoogle Scholar
  18. Kaveev, A.K., Kropotov, G.I., Tsygankova, E.V., Tzibizov, I.A., Ganichev, S.D., Danilov, S.N., Olbrich, P., Zoth, C., Kaveeva, E.G., Zhdanov, A.I., Ivanov, A.A., Deyanov, R.Z., Redlich, B.: Terahertz polarization conversion with quartz waveplate sets. Appl. Opt. 52, B60–B69 (2013)CrossRefGoogle Scholar
  19. Khanikaev, A.B., Mousavi, S.H., Wu, C., Dabidian, N., Alici, K.B., Shvets, G.: Electromagnetically induced polarization conversion. Opt Commun. 285, 3423–3427 (2012)ADSCrossRefGoogle Scholar
  20. Lalanne, P., Lemercier-Lalanne, D.: On the effective medium theory of subwavelength periodic structures. J. Mod. Opt. 43, 2063–2085 (1996)ADSCrossRefGoogle Scholar
  21. Li, P.: A review of proximity effect correction in electron-beam lithography. Condens. Matter. arXiv:1509.05169v1 (2015)
  22. Phua, P.B., Lai, W.J., Lim, Y.L., Tiaw, K.S., Lim, B.C., Teo, H.H., Hong, M.H.: Mimicking optical activity for generating radially polarized light. Opt. Lett. 32, 376–378 (2007)ADSCrossRefGoogle Scholar
  23. Pregla, R.: MoL-BPM method of lines based beam propagation method. In: Huang, W.P. (ed.) Methods for Modeling and Simulation of Guided-Wave Optoelectronic Devices (PIER 11), Progress in Electromagnetic Research, pp. 65–69. EMW Publishing, Cambridge (1995)Google Scholar
  24. Pregla, R.: Novel FD-BPM for optical waveguide structures with isotropic or anisotropic material. In: European Conference on Integrated Optics (ECIO), Italy, Torino, pp. 55–58 (1999)Google Scholar
  25. Pregla, R.: Analysis of Electromagnetic Fields and Waves—The Method of Lines. Wiley, Chichester (2008)CrossRefGoogle Scholar
  26. Sacks, Z.S., Kingsland, D.M., Lee, R., Lee, J.F.: A perfectly matched anisotropic absorber for use as an absorbing boundary. IEEE Trans. Antennas Propag. 43, 1460–1463 (1995)ADSCrossRefGoogle Scholar
  27. Schneider, V.M.: Analysis of passive optical structures with an adaptive set of radiation modes. Opt. Commun. 160, 230–234 (1999)ADSCrossRefGoogle Scholar
  28. Stork, W., Streibl, N., Haidner, H., Kipfer, P.: Artificial distributed-index media fabricated by zero-order gratings. Opt. Lett. 16, 1921–1923 (1991)ADSCrossRefGoogle Scholar
  29. Tremain, B., Rance, H.J., Hibbins, A.P., Sambles, J.R.: Polarization conversion from a thin cavity array in the microwave regime. Sci. Rep. 5, 9366 (2015)Google Scholar
  30. Werner, D.H., Mittra, R.: A new field scaling interpretation of Berenger’s PML and its comparison to other PML formulations. Microw. Opt. Technol. Lett. 16, 103–106 (1997)CrossRefGoogle Scholar
  31. Yang, Y., Wang, W., Moitra, P., Kravchenko, I.I., Briggs, D.P., Valentine, J.: Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014)ADSCrossRefGoogle Scholar
  32. Zhao, Y., Alù, A.: Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 84, 205428 (2011)Google Scholar
  33. Zhu, H.L., Cheung, S.W., Chung, K., Yuk, T.I.: Linear-to-circular polarization conversion using metasurface. IEEE Trans. Antennas Propag. 61, 4615–4623 (2013)ADSCrossRefGoogle Scholar
  34. Zurmühl, R., Falk, S.: Matrizen und ihre Anwendungen, Teil 1, 5th edn. Springer, Berlin (1984)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Chair of Micro- and NanophotonicsFernUniversität in HagenHagenGermany
  2. 2.Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.IMTEKAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations