Advertisement

Improved design for SOI based evanescently coupled multilayer spot-size converter

  • Niharika Kohli
  • B. M. A. Rahman
  • Enakshi K. Sharma
Article

Abstract

We report an improved version of a spot-size converter (SSC) consisting of a silicon nanowire evanescently coupled to a phase-matched Poly-Si multilayer structure. With wider transversal dimensions the multilayer structure expands the mode significantly thus increasing the coupling efficiency with the conventional single-mode fiber. Detailed optimization process of a 17-layer based SSC is discussed and its coupling efficiency with a high-NA fiber of radius 2 μm is obtained as 98% providing only 0.087 dB loss. Vertical alignment tolerance between the optimized SSC and a high-NA fiber of radius 2 μm is also shown. This novel design does not consist of a taper and can be fabricated by using CMOS compatible process. It has a short device length and more relaxed alignment tolerances with the fiber. Full-vectorial and computationally efficient finite element method and the least squares boundary residual method have been used for the analysis and optimization of the proposed structure.

Keywords

Spot-size converter Multilayers Integrated optics Silicon photonics 

Notes

Acknowledgements

Niharika Kohli would like to acknowledge Erasmus Mundus INTACT, University Grants Commission, India and University of Delhi for the financial support.

References

  1. Bakir, B.B., Gyves, A.V.D., Orobtchouk, R., Lyan, P., Porzier, C., Roman, A., Fedeli, J.-M.: Low-Loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers. IEEE Photon Technol. Lett. 22, 739–741 (2010)ADSCrossRefGoogle Scholar
  2. Barh, A., Rahman, B.M.A., Varshney, R.K., Pal, B.P.: Design and performance study of a compact SOI polarization rotator at 1.55 μm. J. Lightwave Technol. 31, 3687–3693 (2013)ADSCrossRefGoogle Scholar
  3. Cheng, Z., Chen, X., Wong, C.Y., Xu, K., Fung, C.K.Y., Chen, Y.M., Tsang, H.K.: Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Opt. Lett. 37, 1217–1219 (2012a)ADSCrossRefGoogle Scholar
  4. Cheng, Z., Chen, X., Wong, C.Y., Xu, K., Tsang, H.K.: Broadband focusing grating couplers for suspended-membrane waveguides. Opt. Lett. 37, 5181–5183 (2012b)ADSCrossRefGoogle Scholar
  5. Cheng, Z., Tsang, H.K.: Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt. Lett. 39, 2206–2209 (2014)ADSCrossRefGoogle Scholar
  6. Fang, Q., Liow, T.Y., Song, J.F., Tan, C.W., Yu, M.B., Lo, G.Q., Kwong, D.L.: Suspended optical fiber-to-waveguide mode size converter for silicon photonics. Opt. Express 18, 7763–7769 (2010)ADSCrossRefGoogle Scholar
  7. Ghatak, A., Thyagarajan, K.: Optical Electronics. Cambridge University Press, Cambridge (1991)Google Scholar
  8. Haxha, S., Ladely, E.O., Mjeku, M., AbdelMalek, F., Rahman, B.M.A.: Optimization of compact lateral, vertical, and combined tapered spot-size converters by use of the beam-propagation method. Appl. Opt. 45, 288–296 (2006)ADSCrossRefGoogle Scholar
  9. Jiang, W., Kohli, N., Sun, X., Rahman, B.M.A.: Multi-poly-silicon-layer based spot-size converter for efficient coupling between silicon waveguide and standard single-mode fiber. IEEE Photon. J. 8, 1–12 (2016)Google Scholar
  10. Papes, M., Cheben, P., Benedikovic, D., Schmid, J.H., Pond, J., Halir, R., Moñux, A.O., Pérez, G.W., Ye, W.N., Xu, D.X., Janz, S., Dado, M., Vašinek, V.: Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides. Opt. Express 24, 5026–5038 (2016)ADSCrossRefGoogle Scholar
  11. Picard, M.J., Latrasse, C., Larouche, C., Painchaud, Y., Poulin, M., Pelletier, F., Guy, M.: CMOS-compatible spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low-loss low-wavelength dependence and high tolerance to misalignment. Proc. SPIE 9752, 97520W (2016). doi: 10.1117/12.2208629 CrossRefGoogle Scholar
  12. Preston, K., Schmidt, B., Lipson, M.: Polysilicon photonic resonators for large-scale 3D integration of optical networks. Opt. Express 15, 17283–17290 (2007)ADSCrossRefGoogle Scholar
  13. Rahman, B.M.A., Davies, J.B.: Finite-element analysis of optical and microwave waveguide problems. IEEE Trans. Microw. Theory Tech. 32, 20–28 (1984)ADSCrossRefGoogle Scholar
  14. Rahman, B. M. A., Davies, J. B.: Vector-H finite element solution of GaAs GaAlAs rib waveguides. IEEE Proc. J. Optoelectron. 132, 349–353 (1985)Google Scholar
  15. Rahman, B.M.A., Davies, J.B.: Analysis of optical waveguide discontinuities. J. Lightwave Technol. 6, 52–57 (1988)ADSCrossRefGoogle Scholar
  16. Rajarajan, M., Rahman, B.M.A., Wongcharoen, T., Grattan, K.T.V.: Accurate analysis of MMI devices with two-dimensional confinement. J. Lightwave Technol. 14, 2078–2084 (1996)ADSCrossRefGoogle Scholar
  17. Sisto, M.M., Fisette, B., Paultre, J.E., Paquet, A., Desroches, Y.: Novel spot size converter for coupling standard single mode fibers to SOI waveguides. Proc. SPIE 9752, 975217 (2016). doi: 10.1117/12.2230739 CrossRefGoogle Scholar
  18. Taillaert, D., Bogaerts, W., Bienstman, P., Krauss, T.F., Daele, P.V., Moerman, I., Verstuyft, S., Mesel, K.D., Baets, R.: An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quantum Electron. 38, 949–955 (2002)ADSCrossRefGoogle Scholar
  19. Taillaert, D., Laere, F.V., Ayre, M., Bogaerts, W., Thourhout, D.V., Bienstman, P., Baets, R.: Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jpn. J. Appl. Phys. 45, 6071–6077 (2006)ADSCrossRefGoogle Scholar
  20. Tokushima, M., Kamei, A., Horikawa, T.: Dual-tapered 10-µm-spot-size converter with double core for coupling polarization-independent silicon Rib waveguides to single-mode optical fibers. Appl. Phys. Expr. 5, 2202 (2012). doi: 10.1143/APEX.5.022202 CrossRefGoogle Scholar
  21. Tsuchizawa, T., Yamada, K., Fukuda, H., Watanabe, T., Takahashi, J., Takahashi, M., Shoji, T., Tamechika, E., Itabashi, S., Morita, H.: Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005)CrossRefGoogle Scholar
  22. Uthman, M., Rahman, B.M.A., Kejalakshmy, N., Agrawal, A., Abana, H., Grattan, K.T.V.: Stabilized large mode area in tapered photonic crystal fiber for stable coupling. IEEE Photon J. 4, 340–349 (2012)CrossRefGoogle Scholar
  23. Wongcharoen, T., Rahman, B.M.A., Grattan, K.T.V.: Accurate characterization of optical filters with two-dimensional confinement. J. Lightwave Technol. 14, 2596–2603 (1996)ADSCrossRefGoogle Scholar
  24. Wongcharoen, T., Rahman, B.M.A., Rajarajan, M., Grattan, K.T.V.: Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling. J. Lightwave Technol 19, 708–716 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Electronic ScienceUniversity of Delhi South CampusNew DelhiIndia
  2. 2.School of Mathematics, Computer Science and EngineeringCity, University of LondonNorthampton SquareUK

Personalised recommendations