Fabrication and laser-assisted modification of the Ag particles ensembles supporting quadrupole plasmon oscillations

  • Nikita A. Toropov
  • Igor A. Gladskikh
  • Peter S. Parfenov
  • Tigran A. Vartanyan
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies


A combination of physical vapour deposition, thermal annealing and laser irradiation was used to tailoring of the silver nanoparticles array on a quartz substrate. This method for control of optical properties is exploit 355-nm pulsed laser irradiation. Experimental separation of three main overlapped plasmonic modes, dipoles that correspond to parallel and perpendicular oscillations and quadrupole with maximum wavelength at 355 nm, in extinction spectrum of Ag nanoparticles ensembles was demonstrated. It was shown that the laser post-processing of the nanoparticles array in spectral vicinity of the quadrupole band leads to selective ablation of nanometer particles. This process resulted to close-packing of the nanoparticles ensemble on top of the substrate causing, in turn, formation of ‘hot-spots’ and absorptive bands in the near IR range. Using the laser post-processing as persistent spectral hole burning technique, a dephasing time of quadrupole plasmon resonances was experimentally defined for the first time.


Silver nanoparticles Plasmon Laser tailoring Ablation Quadrupole resonance Dephasing time 



This work was partially supported by Ministry of Education and Science (Project 2014/190), the Government of Russia (Grant 074-U01), the Russian President’s Grant (MK 228.2017.2), and the RFBR (16-32-60028 mol_a_dk).


  1. Bagratashvili, V.N., Rybaltovsky, A.O., Minaev, N.V., Timashev, P.S., Firsov, V.V., Yusupov, V.I.: Laser-induced atomic assembling of periodic layered nanostructures of silver nanoparticles in fluoro-polymer film matrix. Laser Phys. Lett. 7, 401–404 (2010). doi: 10.1002/lapl.200910159 ADSCrossRefGoogle Scholar
  2. Blázquez Sánchez, D., Hubenthal, F., Träger, F.: Shaping nanoparticles with laser light: a multi-step approach to produce nanoparticle ensembles with narrow shape and size distributions. J. Phys: Conf. Ser. 59, 240–244 (2007). doi: 10.1088/1742-6596/59/1/051 Google Scholar
  3. Bosbach, J., Hendrich, C., Stietz, F., Vartanyan, T., Träger, F.: Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding. Phys. Rev. Lett. 89, 257404 (2002). doi: 10.1103/PhysRevLett.89.257404 ADSCrossRefGoogle Scholar
  4. Hendrich, C., Bosbach, J., Stietz, F., Hubenthal, F., Vartanyan, T., Träger, F.: Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning. Appl. Phys. B 76, 869–875 (2003). doi: 10.1007/s00340-003-1168-9 ADSCrossRefGoogle Scholar
  5. Henley, S.J., Beliatis, M.J., Stolojan, V., Silva, S.R.P.: Laser implantation of plasmonic nanostructures into glass. Nanoscale 5, 1054–1059 (2013). doi: 10.1039/C2NR33629D ADSCrossRefGoogle Scholar
  6. Hlaing, M., Gebear-Eigzabher, B., Roa, A., Marcano, A., Radu, D., Lai, C.-Y.: Absorption and scattering cross-section extinction values of silver nanoparticles. Opt. Mater. 58, 439–444 (2016). doi: 10.1016/j.optmat.2016.06.013 ADSCrossRefGoogle Scholar
  7. Kalfagiannis, N., Siozios, A., Bellas, D.V., Toliopoulos, D., Bowen, L., Pliatsikas, N., Cranton, W.M., Kosmidis, C., Koutsogeorgis, D.C., Lidorikis, E., Patsalas, P.: Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring. Nanoscale 8, 8236–8244 (2016). doi: 10.1039/C5NR09192F ADSCrossRefGoogle Scholar
  8. Kang, M., Park, S.-G., Jeong, K.-H.: Repeated solid-state dewetting of thin gold films for nanogap-rich plasmonic nanoislands. Sci. Rep. 5, 14790 (2015). doi: 10.1038/srep14790 ADSCrossRefGoogle Scholar
  9. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003). doi: 10.1021/jp026731y CrossRefGoogle Scholar
  10. Maragò, O.M., Jones, P.H., Gucciardi, P.G., Volpe, G., Ferrari, A.C.: Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8, 807–819 (2013). doi: 10.1038/nnano.2013.208 ADSCrossRefGoogle Scholar
  11. Nichols, W.T., Malyavanatham, G., Henneke, D.E., O’Brien, D.T., Becker, M.F., Keto, J.W.: Bimodal nanoparticle size distributions produced by laser ablation of microparticles in aerosols. J. Nanopart. Res. 4, 423–432 (2002). doi: 10.1023/A:1021644123428 ADSCrossRefGoogle Scholar
  12. Paradisanos, I., Kymakis, E., Fotakis, C., Kioseoglou, G., Stratakis, E.: Intense femtosecond photoexcitation of bulk and monolayer MoS2. Appl. Phys. Lett. 105, 041108 (2014). doi: 10.1063/1.4891679 ADSCrossRefGoogle Scholar
  13. Peng, P., Hu, A., Zhou, Y.: Laser sintering of silver nanoparticle thin films: microstructure and optical properties. Appl. Phys. A 2012(108), 685–691 (2012). doi: 10.1007/s00339-012-6951-1 ADSCrossRefGoogle Scholar
  14. Resta, V., Siegel, J., Bonse, J., Gonzalo, J., Afonso, C.N.: Sharpening the shape distribution of gold nanoparticles by laser irradiation. J. Appl. Phys. 100, 084311 (2006). doi: 10.1063/1.2358822 ADSCrossRefGoogle Scholar
  15. Stalmashonak, A., Graener, H., Seifert, G.: Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses. Appl. Phys. Lett. 94, 193111 (2009). doi: 10.1063/1.3138127 ADSCrossRefGoogle Scholar
  16. Stietz, F.: Laser manipulation of the size and shape of supported nanoparticles. Appl. Phys. A 72, 381–394 (2001). doi: 10.1007/s003390100757 ADSCrossRefGoogle Scholar
  17. Tsuji, T., Thang, D.-H., Okazaki, Y., Nakanishi, M., Tsuboi, Y., Tsuji, M.: Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci. 254, 5224–5230 (2008). doi: 10.1016/j.apsusc.2008.02.048 ADSCrossRefGoogle Scholar
  18. Vasileiadis, T., Dracopoulos, V., Kollia, M., Yannopoulos, S.N.: Laser-assisted growth of t-Te nanotubes and their controlled photo-induced unzipping to ultrathin core-Te/sheath-TeO2 nanowires. Sci. Rep. 3, 1209 (2013). doi: 10.1038/srep01209 ADSCrossRefGoogle Scholar
  19. Vartanyan, T.A., Leonov, N.B.: Changes in morphology and optical properties of silver island films on transparent dielectric substrates under exposure to laser radiation. Opt. Spectrosc. 120, 628–632 (2016). doi: 10.1134/S0030400X1604024X ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nikita A. Toropov
    • 1
  • Igor A. Gladskikh
    • 1
  • Peter S. Parfenov
    • 1
  • Tigran A. Vartanyan
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations