Optical properties of plasmonic silver nanoparticles exposed to organic solvents

  • Nikita B. Leonov
  • Sergey G. Przhibel’skii
  • Tigran A. Vartanyan


The influence of ethanol and acetic acid on the structure and optical properties of silver granular films formed by physical vapor deposition in a high vacuum on sapphire substrates was studied via optical spectroscopy and scanning electron microscopy. It was found that irregularly shaped oblate silver grains transforms into almost spherical nanoparticles. Simultaneously, optical extinction spectra shift in the short wavelength range and become narrower. The same effect was observed when liquid crystal was poured on such film. It was noticed, that nanoparticle shapes change under the action of these fluids in the same way as in the process of thermal annealing. This analogy suggests that the observed effects could be explained by acceleration of atomic diffusion over the islet surfaces. It was noticed also that the resistance of thick granular films changes abruptly several minutes after pouring such film with ethanol. This jump of resistance is also very similar to the resistance jump observed previously in the case of annealing.


Silver nanoparticles Extinction Plasmon resonance Self-diffusion 



This work was supported by Russian Ministry of Education and Science (Project 2014/190) and the Government of Russia (Grant 074-U01). The authors are grateful to V.A. Polishchuk for executing the electron microscopic studies and to A.A. Tsyganenko for useful discussions and comments.


  1. Combe, N., Jensen, P., Pimpinelli, A.: Changing shapes in the nanoworld. Phys. Rev. Lett. 85, 110-113 (2000)ADSCrossRefGoogle Scholar
  2. Deivaraj, T.C., Lala, N.L., Lee, J.Y.: Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. J. Colloid Interface Sci. 289, 402–409 (2005)CrossRefGoogle Scholar
  3. Ehrlich, G., Hudda, F.G.: Atomic view of surface self-diffusion: tungsten on tungsten. J. Chem. Phys. 44, 1039–1049 (1966)ADSCrossRefGoogle Scholar
  4. Elias, W.C., Eising, R., Silva, T.R., Albuquerque, B.L., Martendal, E., Meier, L., Domingos, J.B.: Screening the formation of silver nanoparticles using a new reaction kinetics multivariate analysis and assessing their catalytic activity in the reduction of nitroaromatic compounds. J. Phys. Chem. C 118(24), 12962–12971 (2014)CrossRefGoogle Scholar
  5. Henderson, M.A.: The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002)ADSCrossRefGoogle Scholar
  6. Hodgson, A., Haq, S.: Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381–451 (2009)ADSCrossRefGoogle Scholar
  7. Holloway, S., Bcnncmann, K.H.: Study of water adsorption on metal surfaces. Surf. Sci. 101, 327–333 (1980)ADSCrossRefGoogle Scholar
  8. Hussain, J.I., Kumar, S., Hashmi, A.A., Khan, Z.: Silver nanoparticles: preparation, characterization, and kinetics. Adv. Mater. Lett. 2(3), 188–194 (2011)CrossRefGoogle Scholar
  9. Iravani, S., Korbekandi, H., Mirmohammadi, S.V., Zolfaghari, B.: Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 9(6), 385–406 (2014)Google Scholar
  10. Jin, R., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G.: Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001)ADSCrossRefGoogle Scholar
  11. Kim, S.J., Ah, C.S., Jang, D.J.: Laser-induced growth and reformation of gold and silver nanoparticles. J. Nanopart. 11, 2023–2030 (2009)CrossRefGoogle Scholar
  12. Kreibig, U., Vollmer, M.: Optical Properties of Metall Clasters, Springer Series in Materials Science, p. 535. Springer, Berlin (1995)Google Scholar
  13. Kuznetsov, A.M., Nazmutdinov, R.R., Shapnik, M.S.: Water adsorption—quantum chemical approach. Electrochim. Acta 34, 1821–1828 (1989)CrossRefGoogle Scholar
  14. Leonov, N.B., Gladskikh, I.A., Polishchuk, V.A., Vartanyan, T.A.: Evolution of the optical properties and morphology of thin metal films during growth and annealing. Opt. Spectrosc. 119(3), 450–455 (2015)ADSCrossRefGoogle Scholar
  15. Lin, L., Liu, T., Zhang, Y., et al.: Enhancing ethanol detection by heterostructural silver nanoparticles decorated polycrystalline zinc oxide nanosheets. Ceram. Int. Part B 42(2), 3138–3144 (2016)CrossRefGoogle Scholar
  16. Liu, J., Hu, M., Song, Y., Wang, F., Ji, J., Li, Z.: A novel strategy to prepare silver nanoparticles by ethanol-induced shape conversion of silver dendrites from modified galvanic replacement. Synth. Met. 187, 185–192 (2014)CrossRefGoogle Scholar
  17. Mitsui, T., Rose, M.K., Fomin, E., Ogletree, D.F., Salmeron, M.: Water diffusion and clustering on Pd (l 11). Science 297, 1850–1852 (2002)ADSCrossRefGoogle Scholar
  18. Morgenstern, K., Nieminen, J.: Intermolecular bond length of ice on Ag (l 11). Phys. Rev. Lett. 88, 066102 (2002)ADSCrossRefGoogle Scholar
  19. Morgenstern, K., Rieder, K.-H.: Formation of the cyclic ice hexamer via excitation of vibrational molecular modes by the scanning tunneling microscope. J. Chem. Phys. 116, 5746–5752 (2002)ADSCrossRefGoogle Scholar
  20. Polavarapu, L., Liz-Marzán, L.M.: Growth and galvanic replacement of silver nanocubes in organic media. Nanoscale 5(10), 4355–4361 (2013)ADSCrossRefGoogle Scholar
  21. Ranea, V.A., Michaelides, A., Ramirez, R., Verges, J.A., de Andres, P.L., King, D.A.: Density functional theory study of the interaction of monomeric water with the Ag (l 11) surface. Phys. Rev. B 69, 205411 (2004)ADSCrossRefGoogle Scholar
  22. Schwoebel, R.L.: Step motion on crystal surfaces. J. Appl. Phys. 37, 3682–3686 (1966)ADSCrossRefGoogle Scholar
  23. Sun, Y., Mayers, B., Xia, Y.: Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett. 3, 675–679 (2003)ADSCrossRefGoogle Scholar
  24. Tochitskii, E.I.: Crystallization and Thermal Processing of Thin Films, pp. 1–376. Science and Technology, Minsk (1976)Google Scholar
  25. Vartanyan, T.A., Gladskikh, I.A., Leonov, N.B., Przhibel’ski, S.G.: Fine structures and switching of electrical conductivity in labyrinth silver films on sapphire. Phys. Solid State 56(4), 816–822 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nikita B. Leonov
    • 1
  • Sergey G. Przhibel’skii
    • 1
  • Tigran A. Vartanyan
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations