Tunnel/jump electroconductivity in the laser-induced nanocluster structures with controlled topology

  • S. ArakelianEmail author
  • A. Kucherik
  • S. Kutrovskaya
  • A. Osipov
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies


By method of laser-induced thermal deposition of colloidal particles laser we have produced the metallic granular films for which the ability to control the change in its electrical properties does exist by variation of the topology for the system. The quantum states verification in cluster metallic structures by jump/tunneling electroconductivity and possible mechanisms for its implementation are considered in experiment and theory. The granular conductivity specificity has been under study. The current–voltage characteristics behavior has been measured for a gold (Au) and Au-carbyne clustered film. Two associated mechanisms for electroconductivity occur in the case, i.e. tunnel transition for electrons and electron activation in the frames of the shell model for a cluster system, in dependence on the nanostructure topology.


Electroconductivity Tunneling Nanocluster structures Jump electroconductivity Topology control 



This study was funded by the Ministry of Education and Science of the Russian Federation VlSU-project #16.1123.2017 and partly supported in by the Russian Foundation for Basic Research Project #16-42-330461 and 16-32-60067 mol_a_dk.


  1. Abrikosov, A.A.: Principles of Metal Theory. FIZMATLIT, Moscow (2009)Google Scholar
  2. Arakelian, S., Emelyanov, V., Kutrovskaya, S., Kucherik, A., Zimin, S.: Laser-induced semiconductor nanocluster structures on the solid surface: new physical principles to construct the hybrid elements for photonics. Opt. Quant. Electron. 48(6), 1–16 (2016). doi: 10.1007/s11082-016-0608-9 CrossRefGoogle Scholar
  3. Arakelian, S.M., Kucherik, A.O., Prokoshev, V.G., Rau, V.G., Sergeev, A.G.: Introduction to Femtonanophotonics: Fundamental and Laser Methods of Controlled Fabrication and Diagnostics of Nanostructured Materials. Logos Publ, Moscow (2015)Google Scholar
  4. Arakelyan, S.M., Veiko, V.P., Kutrovskaya, S.V., Kucherik, A.O., Osipov, A.V., Vartanyan, T.A., Itina, T.E.: Reliable and well-controlled synthesis of noble metal nanoparticles by continuous wave laser ablation in different liquids for deposition of thin films with variable optical properties. J. Nanopart. Res. 18(6), 1–12 (2016). doi: 10.1007/s11051-016-3468-0 CrossRefGoogle Scholar
  5. Cavalleri, A., Först, M., Mankowsky, R.: Superconductivity without cooling. Research NEWS. Max Plank Institute. Accessed 03 Dec 2014
  6. Demishev, S.V., Pronin, A., Glushkov, V.V., Sluchanko, N.E., Samarin, N.A., Kondrin, M.V., Lyapin, G., Brazhkin, V.V., Varfolomeeva, T.D., Popova, S.V.: Hopping conductivity of carbynes modified under high pressures and temperatures: galvanomagnetic and thermoelectric properties. J. Exp. Theor. Phys. 95(1), 123–131 (2002). doi: 10.1134/1.1499910 ADSCrossRefGoogle Scholar
  7. Dragunov, V.P., Neizvestnyi, I.G., Gridchin, V.A.: Fundamentals of Nanoelectronics. Logos Publ, Moscow (2006)Google Scholar
  8. Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 K at high pressures. Nature 525(7567), 73–76 (2015). doi: 10.1038/nature14964 ADSCrossRefGoogle Scholar
  9. Emelyanov, V.I., Koroteev, N.I.: Giant Raman scattering of light by molecules adsorbed on the surface of a metal. Sov. Phys. Usp. 24, 864–873 (1981)ADSCrossRefGoogle Scholar
  10. Hu, Y., Wang, Z., Weng, Z., Yu, M., Wang, D.: Bio-inspired hierarchical patterning of silicon by laser interference lithography. Appl. Opt. 55(12), 3226–3232 (2016). doi: 10.1364/AO.55.003226 ADSCrossRefGoogle Scholar
  11. Kozhevin, V.M., Yavsin, D.A., Smirnova, I.P., Kulagina, M.M., Gurevich, S.A.: Effect of oxidation on the electrical properties of granular copper nanostructures. Phys. Solid State 45(10), 1993–2000 (2003). doi: 10.1134/1.1620108 ADSCrossRefGoogle Scholar
  12. Kucherik, A.O., Arakelian, S.M., Garnov, S.V., Kutrovskaya, S.V., Nogtev, D.S., Osipov, A.V., Khor’kov, K.S.: Two-stage laser-induced synthesis of linear carbon chains. Quantum Electron. 46(7), 627–633 (2016a). doi: 10.1070/QEL16128 ADSCrossRefGoogle Scholar
  13. Kucherik, A., Arakelian, S., Vartanyan, T., Kutrovskaya, S., Osipov, A., Povolotskaya, A., Povolotskii, A., Man’shina, A.: Laser-induced synthesis of metal–carbon materials for implementing surface-enhanced Raman scattering. Opt. Spectrosc. 121(2), 263–270 (2016b). doi: 10.1134/S0030400X16080105 ADSCrossRefGoogle Scholar
  14. Meilikhov, E.Z.: Thermally activated conductivity and current-voltage characteristic of dielectric phase in granular metals. J. Exp. Theor. Phys. 88(4), 819–825 (1999). doi: 10.1134/1.558861 ADSCrossRefGoogle Scholar
  15. SCHOTT refractive Index Database,
  16. Sergeenkov, S., Cichetto Jr., L., Diaz, J.C.C.A., Bastos, W.B., Longo, E., Araújo-Moreira, F.M.: Manifestation of unusual size effects in granular thin films prepared by pulsed laser deposition. J. Phys. Chem. Solids 98, 38–42 (2016). doi: 10.1016/j.jpcs.2016.06.003 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Stoletovs Vladimir State UniversityVladimirRussia

Personalised recommendations