Mutual influence of Auger and non-radiative recombination processes under silicon femtosecond laser irradiation

Article
  • 69 Downloads
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies

Abstract

The results of theoretical study of the contribution of recombination processes in additional heating of the surface of monocrystalline silicon during multipulse femtosecond laser processing are presented to discussion. The numerical evaluations are made in regimes of the laser radiation below the ablation threshold, when the microgeometry of the surface is formed due to the processes of self-organization. The influence of Auger recombination processes on the photoexcitation of the semiconductor during the pulse and relaxation after the pulse is studied in detail. It is shown that the additional heating of the surface due to non-radiative recombination is extremely small at pulse repetition rate 10 Hz–1 MHz. Mutual influence of recombination processes of both types is shown.

Keywords

Recombination processes Femtosecond laser pulses Monocrystalline silicon 

Notes

Acknowledgements

The authors are grateful to I.V. Guk for useful discussions. This work was supported by Grant 14-29-07227 from the Russian Foundation for Basic Research and by Grant 14-12-00351 from the Russian Science Foundation.

References

  1. Ashitkov, S.I., Ovchinnikov, A.V., Agranat, M.B.: Recombination of an electron-hole plasma in silicon under the action of femtosecond laser pulses. JETP Lett. 79, 529–531 (2004)ADSCrossRefGoogle Scholar
  2. Beck, J.D., Conradt, R.: Auger-recombination in Si. Solid State Commun. 13, 93–95 (1973)ADSCrossRefGoogle Scholar
  3. Cerami, L., Mazur, L.E., Nolte, S., Schaffer, C.B.: Femtosecond laser Micromachining. Ultrafast Nonlinear Optics, Chapter 12. Springer, New York (2013)Google Scholar
  4. Gerlach, W., Schlangenotto, H., Maeder, H.: On the radiative recombination rate in silicon. Phys. Status Solidi A 13, 277–283 (1972)ADSCrossRefGoogle Scholar
  5. Guk, I., Shandybina, G., Yakovlev, E.: Infuence of accumulation effects on heating of silicon surface by femtosecond laser pulses. Appl. Surf. Sci. 335, 851–855 (2015)ADSCrossRefGoogle Scholar
  6. Guk, I.V., Shandybina, G.D., Yakovlev, E.B., Shamova, A.A.: Role of recombination processes during multipulse femtosecond microstructuring of silicon surface. Opt. Quantum Electron. 48, 1–10 (2016)CrossRefGoogle Scholar
  7. Harzic, R., Schuck, H., Sauer, D., Anhut, T., Riemann, I., König, K.: Sub-100 nm nanostructuring of silicon by ultrashort laser pulses. Opt. Express 13, 6651–6656 (2005)ADSCrossRefGoogle Scholar
  8. Hawley M.J.: High pressure studies of strained layer semiconductor’ lasers. Ph.D. thesis, University of Surrey, (1993)Google Scholar
  9. Hopkins, P.E., Barnat, E.V., Cruz-Campa, J.L., Grubbs, R.K., Okandan, M., Nielson, G.N.: Excitation rate dependence of Auger recombination in silicon. J. Appl. Phys. 107, 1–6 (2010)CrossRefGoogle Scholar
  10. Li, C.-M., Sjodin, T., Dai, H.-L.: Photoexcited carrier diffusion near a Si(111) surface: non-negligible consequence of carrier-carrier scattering. Phys. Rev. B 56, 15252–15255 (1997)ADSCrossRefGoogle Scholar
  11. Martsinovsky, G.A., Shandybina, G.D., Dement’eva, Y.S., Dyukin, R.V., Zabotnov, S.V., Golovan’, L.A., Kashkarov, P.K.: Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses. Semiconductors 43, 1298–1304 (2009)ADSCrossRefGoogle Scholar
  12. Ruzicka, B.A.: Ultrafast optical studies of electronic dynamics in semiconductors. Ph.D. thesis, University of Kansas (2012)Google Scholar
  13. Tan, B., Venkatakrishnan, K.: A femtosecond laser-induced periodical surface structure on crystalline silicon. J. Micromech. Microeng. 16, 1–6 (2006)CrossRefGoogle Scholar
  14. Veiko, V.P., Libenson, M.N., Chervyakov, G.G., Yakovlev, E.B.: Vzaimodeistvie Lazernogo Izlucheniya s Veshchestvom [Interaction of Laser Radiation with Matter]. Fizmatlit, Moscow (2008)Google Scholar
  15. Willardson, R.K., Weber, E.R., Tsen, K.T.: Ultrafast Physical Processes in Semiconductors. Elsevier, Amsterdam (2000)Google Scholar
  16. Yakovlev, E.B., Sergaeva, O.N., Svirina, V.V., Yarchuk, M.V.: Modeling of thin Cr film oxidation under the action of ultrashort laser pulses. SPIE 9065, 906509-1-906509-6 (2013)Google Scholar
  17. Zhu, J., Li, W., Zhao, M., Yin, G., Chen, X., Chen, D., Zhao, L.: Silicon microstructuring using ultrashort laser pulses. Lasers in Material Processing and Manufacturing II. Proc. SPIE, 5629, 276–283 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University ITMOSt. PetersburgRussia

Personalised recommendations