Thresholds for nonlinear recording of fluorescent centers in chromone-doped polymer films

  • A. O. Ayt
  • V. A. Barachevsky
  • A. Duensing
  • Ya. Yu. Fomicheva
  • S. V. Gagarskiy
  • H. Iglev
  • V. V. Kiyko
  • M. M. Krayushkin
  • A. N. Sergeev
  • A. V. Veniaminov
  • V. V. Zakharov
Article
  • 117 Downloads
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies

Abstract

Nonlinear recording of stable fluorescent microstructures in PMMA films doped with photosensitive compound 2-(furan-2-yl)-3-(thiophen-2-carbonyl)-chromen-4-one is investigated. Energy and power density thresholds for recording stable fluorescent marks and for film destruction and photobleaching of the fluorescent marks by laser pulses were measured in wide spectral (from 530 to 620 nm) and temporal (from 80 to 7 ns) ranges. The evidences of the sequential two-step excitation mechanism for the studied dye are presented. It was shown that picosecond pulse duration range is preferable for two-photon data recording. Quasi-Gaussian and donut shaped fluorescent marks with almost the same cross-section were recorded by femtosecond pulses with rather small difference in energies.

Keywords

Chromone Photosensitive organic compounds Fluorescence Two-photon excitation Data recording Archive memory 

References

  1. Ayt, A., Barachevsky, V., Kobeleva, O., Valova, T., Gagarskiy, S., Kiyko, V., Sergeev, A., Veniaminov, A., Zakharov, V., Krayushkin, M.: Two-photon recording of stable luminescent centers in chromone-doped polymer films. IEEE (2014). doi: 10.1109/LO.2014.6886252
  2. Barachevsky, V., Krayushkin, M., Kyiko, V., Grebennikov, E.: Light-sensitive organic recording media for 3D optical memory. Phys. Status Solidi (c) 8(9), 2841–2845 (2011). doi: 10.1002/pssc.201084049 ADSCrossRefGoogle Scholar
  3. Carl Zeiss GmbH: LSM 710 and ConfoCor 3. Carl Zeiss MicroImaging GmbH (2008)Google Scholar
  4. Dvornikov, A., Walker, E., Rentzepis, P.: Two-photon three-dimensional optical storage memory. J. Phys. Chem. A 113(49), 13633–13644 (2009). doi: 10.1021/jp905655z CrossRefGoogle Scholar
  5. Fischer, M.K., Gliserin, A., Laubereau, A., Iglev, H.: Ultrafast electron transfer processes studied by pump-repump-probe spectroscopy. J. Biophoton. 4(3), 178–183 (2011). doi: 10.1002/jbio.201000099 CrossRefGoogle Scholar
  6. Gagarskiy, S.V., Gnatyuk, P.A., Sergeev, A.N., Khramov, V.Y.: Diode pumped solid-state lasers for volume 3-D marking of transparent dielectrics. J. Instrum. Eng. 56(9), 12–17 (2013a) (in russian)Google Scholar
  7. Gagarskiy, S.V., Kiyko, V.V., Kondratiyev, V.A., Sergeev, A.N., Khramov, V.Y., Yakobson, V.E.: Compression of diode-pumped microchip laser pulses by backward SRS-conversion. J. Instrum. Eng. 56(9), 31–36 (2013b) (in russian)Google Scholar
  8. Gnatyuk, V.A., Vlasenko, O.I., Levytskyi, S.N., Aoki, T., Mizeikis, V., Gagarsky, S.V., Zelenska, K.S., Gnatyuk, D.V.: Capabilities of laser-induced marks as information carriers created in different materials. J. Laser Micro Nanoeng. 11(2), 164 (2016). doi: 10.2961/jlmn.2016.02.0005 CrossRefGoogle Scholar
  9. Gu, M., Cao, Y., Castelletto, S., Kouskousis, B., Li, X.: Super-resolving single nitrogen vacancy centers within single nanodiamonds using a localization microscope. Opt. Express 21(15), 17639–17646 (2013). doi: 10.1364/OE.21.017639 ADSCrossRefGoogle Scholar
  10. Hunter, S., Kiamilev, F., Esener, S., Parthenopoulos, D.A., Rentzepis, P.M.: Potentials of two-photon based 3-D optical memories for high performance computing. Appl. Opt. 29(14), 2058–2066 (1990). doi: 10.1364/AO.29.002058 ADSCrossRefGoogle Scholar
  11. Kiyko, V.V.: Device for recording and reading data on a multi-layer optical disc. USA Patent 8462603 (11 June 2013)Google Scholar
  12. Krayushkin, M.M., Levchenko, K.S., Yarovenko, V.N., Zavarzin, I.V., Barachevsky, V.A., Puankov, Y.A., Valova, T.M., Kobeleva, O.I.: Synthesis and study of photosensitive chromone derivatives for recording media of archival three-dimensional optical memory. Arkivoc 9, 269–283 (2009)Google Scholar
  13. Martynov, I.Y., Barachevsky, V., Ayt, A., Kobeleva, O., Valova, T., Levchenko, K., Yarovenko, V., Krayushkin, M.: Fluorescence properties of light-sensitive chromones used in archival polymer recording media. Opt. Mater. 37, 488–492 (2014). doi: 10.1016/j.optmat.2014.07.011 ADSCrossRefGoogle Scholar
  14. Milster, T.D., Zhang, Y., Butz, J., Miller, T., Walker, E.: Volumetric Bit-Wise Memories. In: NASA Earth Science Technology Conference (2002)Google Scholar
  15. Milster, T.D., Zhang, Y., Pinto, C., Walker, E.: A volumetric memory device based on photo-chromatic compounds. In: NASA Earth Science Technology Conference (2001)Google Scholar
  16. Pudavar, H.E., Joshi, M.P., Prasad, P.N., Reinhardt, B.A.: High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout. Appl. Phys. Lett. 74(9), 1338–1340 (1999). doi: 10.1063/1.123543 ADSCrossRefGoogle Scholar
  17. Sivaraman, R., Clarson, S., Lee, B., Steckl, A., Reinhardt, B.: Photoluminescence studies and read/write process of a strong two-photon absorbing chromophore. Appl. Phys. Lett. 77(3), 328–330 (2000). doi: 10.1063/1.126966 ADSCrossRefGoogle Scholar
  18. Wang, M., Esener, S., McCormick, F., Çokgör, I., Dvornikov, A., Rentzepis, P.: Experimental characterization of a two-photon memory. Opt. Lett. 22(8), 558–560 (1997). doi: 10.1364/OL.22.000558 ADSCrossRefGoogle Scholar
  19. Ward, C.L., Elles, C.G.: Controlling the excited-state reaction dynamics of a photochromic molecular switch with sequential two-photon excitation. J. Phys. Chem. Lett. 3(20), 2995–3000 (2012). doi: 10.1021/jz301330z CrossRefGoogle Scholar
  20. Ward, C.L., Elles, C.G.: Cycloreversion dynamics of a photochromic molecular switch via one-photon and sequential two-photon excitation. J. Phys. Chem. A 118(43), 10011–10019 (2014). doi: 10.1021/jp5088948 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. O. Ayt
    • 1
  • V. A. Barachevsky
    • 1
  • A. Duensing
    • 3
  • Ya. Yu. Fomicheva
    • 2
  • S. V. Gagarskiy
    • 2
  • H. Iglev
    • 3
  • V. V. Kiyko
    • 2
    • 5
  • M. M. Krayushkin
    • 4
  • A. N. Sergeev
    • 2
  • A. V. Veniaminov
    • 2
  • V. V. Zakharov
    • 2
  1. 1.Photochemistry Center of RASMoscowRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Technical UniversityMunichGermany
  4. 4.N.D. Zelinsky Institute of Organic ChemistryMoscowRussia
  5. 5.Prokhorov General Physics Institute of the Russian Academy of ScienceMoscowRussia

Personalised recommendations