Variation of trap depth by dopant/codopant and heating rate in CaWO4 phosphors

  • A. K. Ambast
  • S. K. SharmaEmail author


This paper deals with comparative investigation on the thermoluminescence (TL) properties as well as trapping parameters of undoped, Dy3+ doped and K+ codoped CaWO4 phosphors. The glow curves of phosphors were recorded after exposure to γ-rays in the dose range 1–5 kGy at a heating rate of 5 °C/s. The glow curves of undoped, doped and codoped phosphors show single prominent glow peak at 100, 135 and 130 °C respectively. In order to investigate the effect of heating rate, TL glow curves were also recorded by varying the heating rates to 3 and 7 °C/s. The TL glow curves were analyzed in order to get the trapping parameters such as trap depth (E), order of kinetics (b) and frequency factor (s). The obtained trapping parameters confirm the presence of second order kinetics. The codoped phosphor show better linear TL response compared to other phosphors indicating their suitability in radiation dosimetry.


Thermoluminescence Glow curve Trapping parameter Dosimetry 



The authors are thankful to Dr. S. P. Lochab, Retired Scientist, Health Physics Lab, Inter University Accelerator Centre, New Delhi for extending the facilities of Gamma chamber and TL analyzer.


  1. Chen, R., Mckeever, S.W.S.: Theory of Thermoluminescence and Related Phenomena. World Scientific Publishing Co. Pvt. Ltd., Singapore (1997)CrossRefGoogle Scholar
  2. Chowdhury, M., Sharma, S.K., Lochab, S.P.: Thermoluminescence glow curve analysis of γ-irradiated Eu3+ doped SnO2 composites. Ceram. Int. 42, 5472–5478 (2016)CrossRefGoogle Scholar
  3. Dabre, K.V., Dhoble, S.J., Lochab, J.: Synthesis and luminescence properties of Ce3+ doped MWO4 (M=Ca, Sr and Ba) microcrystalline phosphors. J. Lumin. 149, 348–352 (2014)CrossRefGoogle Scholar
  4. Dutta, S., Som, S., Sharma, S.K.: Optimization and characterization of trap level distribution in γ-irradiated doped/codoped CaMoO4 phosphors. Phys. B 417, 39–45 (2013)ADSCrossRefGoogle Scholar
  5. Emen, F.M., Kafadar, V.E., Kulcu, N., Yazici, A.N.: Thermoluminescence studies and detailed kinetic analysis of Sr4Al14O25:Eu2, Dy3+ phosphors. J. Lumin. 144, 133–138 (2013)CrossRefGoogle Scholar
  6. Holsa, J., Aitasalo, T., Jungner, H., Lastusaari, M., Niittykoski, J., Spanno, G.: Role of defects state in persistent luminescence materials. J. Alloys Compd. 374, 56–59 (2004)CrossRefGoogle Scholar
  7. Jiang, L.H., Zhang, Y.L., Li, C.Y., Hao, J.Q., Su, Q.: Synthesis, photoluminescence, thermoluminescence and dosimetric properties of novel phosphor KSr4(Bo3)3:Ce. J. Alloys Compd. 482, 313–316 (2009)ADSCrossRefGoogle Scholar
  8. Kang, F., Hun, Y., Wu, H., Mu, Z., Ju, G., Fu, C., Li, N.: Luminescence and red long afterglow investigation of Eu3+–Sm3+ co-doped CaWO4 phosphor. J. Lumin. 132, 887–894 (2012a)CrossRefGoogle Scholar
  9. Kang, F., Hu, Y., Chen, L., Wang, X., Mu, Z., Wu, H.: Eu3+ doped CaWO4—a potential red long afterglow phosphors. Appl. Phys. B 107, 833–837 (2012b)ADSCrossRefGoogle Scholar
  10. Kaur, N., Singh, M., Singh, L., Lochab, S.P.: Investigation of thermoluminescence characteristics of gamma irradiated phlogopite mica. Radiat. Phys. Chem. 87, 26–30 (2013)ADSCrossRefGoogle Scholar
  11. Lou, X.M., Chen, D.H.: Synthesis of CaWO4:Eu3+ phosphor powder via a combustion process and its optical properties. Mater. Lett. 62, 1681–1684 (2008)CrossRefGoogle Scholar
  12. Mhareb, M.H.A., Hasim, S., Ghosal, S.K., Alajerami, Y.S.M., Saleh, M.A., Azizan, S.A.B., Razak, N.A.B., Abdul Karim, M.K.B.: Influence of dysprosium and phosphorous oxide co-doping on thermoluminescence features and kinetic parameters of lithium magnesium borate glass. J. Radioanal. Nucl. Chem. 305, 469–477 (2015)CrossRefGoogle Scholar
  13. Mokoena, P.P., Chithambo, M.L., Kumar, V., Swart, H.C., Ntwaeaborwa, O.M.: Thermoluminescence of calcium phosphate co-doped with gadolinium and praseodymium. Radiat. Meas. 77, 26–33 (2015)CrossRefGoogle Scholar
  14. Obayes, H.K., Wagiran, H., Hussin, R., Saeed, M.A.: A new strontium/copper co-doped lithium borate glass composition with improved dosimetric features. J. Lumin. 176, 202–211 (2016)CrossRefGoogle Scholar
  15. Sharma, K.G., Singh, N.S., Devi, Y.R., Singh, N.R., Singh, S.D.: Effect of annealing on luminescence of CaWO4:Eu3+ nanoparticles and its thermoluminescence study. J. Alloys Compd. 556, 94–101 (2013)CrossRefGoogle Scholar
  16. Srinivas, M., Rao, B.A.: Luminescence studies of Eu3+ doped BaGd2O4 phosphor. J. Sci. Technol. 5, 3022–3026 (2012)Google Scholar
  17. Tamrakar, R.K., Bisen, D.P., Upadhyay, K., Sahu, I.P.: Comparative study of thermoluminescence behaviour of Gd2O3 Phosphor synthesized by solid state reaction and combustion method with different exposures. Radiat. Meas. 84, 41–54 (2016)CrossRefGoogle Scholar
  18. Yuan, Z., Chang, C., Mao, D., Ying, W.: Effect of composition on the luminescence properties of Sr4Al14O25:Eu2, Dy3+ phosphors. J. Alloys. Compd. 377, 268–271 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations