Generation of web-like structures and nanoparticles by femtosecond laser ablation of silicon target in ambient air

  • E. I. Ageev
  • D. V. Potorochin
  • D. V. Sachenko
  • G. V. Odintsova
Article
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies

Abstract

Silicon nanoparticles were produced by femtosecond laser ablation in ambient air. Obtained samples were studied using dark-field optical microscopy, scanning electron microscopy and Raman-scattering spectroscopy. Two groups of structures can be found: (1) branched amorphous structures with a minimum element size of about 10 nm and incorporations of nanocrystals (0.6–6.6 nm from Raman scattering analysis); (2) larger crystal particles with smooth surface and a typical size of 50–200 nm that provide directional visible light scattering (at dark-field optical microscopy observations). An influence of environment on resulting phase composition of silicon nanoparticles was investigated by numerical evaluation of nanoparticle’s cooling rate. The calculation shows that cooling in ambient air ensures cooling rate sufficient for crystallization.

Keywords

Femtosecond laser pulses Pulsed laser ablation Silicon nanoparticles Web-like aggregates Directional light scattering Backward transfer scheme Crystallization 

References

  1. Alkis, S., Okyay, A.K., Ortaç, B.: Post-treatment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: toward blue luminescent nanocrystal generation. J. Phys. Chem. C 116, 3432–3436 (2012)CrossRefGoogle Scholar
  2. Amoruso, S., Bruzzese, R., Spinelli, N., Velotta, R., Vitiello, M., Wang, X., Ausanio, G., Iannotti, V., Lanotte, L.: Generation of silicon nanoparticles via femtosecond laser ablation in vacuum. Appl. Phys. Lett. 84, 4502–4504 (2004)ADSCrossRefGoogle Scholar
  3. Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S., Lereah, Y.: Synthesis of nanoparticles with femtosecond laser pulses. Phys. Rev. B. 69, 144119 (2004)ADSCrossRefGoogle Scholar
  4. Eroshova, O.I., Perminov, P.A., Zabotnov, S.V., Gongal’skii, M.B., Ezhov, A.A., Golovan’, L.A., Kashkarov, P.K.: Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media. Crystallogr. Rep. 57, 831–835 (2012)ADSCrossRefGoogle Scholar
  5. Evlyukhin, A.B., Reinhardt, C., Seidel, A., Luk’Yanchuk, B.S., Chichkov, B.N.: Optical response features of Si-nanoparticle arrays. Phys. Rev. B Condens. Matter Mater. Phys. 82, 1–12 (2010)CrossRefGoogle Scholar
  6. Falter, C.: A unifying approach to lattice dynamical and electronic properties of solids. Phys. Rep. 164, 1–117 (1988)ADSCrossRefGoogle Scholar
  7. Fu, Y.H., Kuznetsov, A.I., Miroshnichenko, A.E., Yu, Y.F., Luk’yanchuk, B.: Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013)ADSCrossRefGoogle Scholar
  8. Glover, T.E.: Hydrodynamics of particle formation following femtosecond laser ablation. J. Opt. Soc. Am. B. 20, 125–131 (2003)ADSCrossRefGoogle Scholar
  9. Hamad, S., Podagatlapalli, G.K., Vendamani, V.S., Nageswara Rao, S.V.S., Pathak, A.P., Tewari, S.P., Venugopal Rao, S.: Femtosecond ablation of silicon in acetone: tunable photoluminescence from generated nanoparticles and fabrication of surface nanostructures. J. Phys. Chem. C 118, 7139–7151 (2014)CrossRefGoogle Scholar
  10. Intartaglia, R., Bagga, K., Brandi, F., Das, G., Genovese, A., Di Fabrizio, E., Diaspro, A.: Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water. J. Phys. Chem. C. 115, 5102–5107 (2011)CrossRefGoogle Scholar
  11. Ischenko, A.A., Fetisov, G.V., Aslalnov, L.A.: Nanosilicon: properties, synthesis, applications, methods of analysis and control. CRC Press, Boca Raton (2015)Google Scholar
  12. Kabashin, A.V., Delaporte, P., Pereira, A., Grojo, D., Torres, R., Sarnet, T., Sentis, M.: Nanofabrication with pulsed lasers. Nanoscale Res. Lett. 5, 454–463 (2010)ADSCrossRefGoogle Scholar
  13. Kuzmin, P.G., Shafeev, G.A., Bukin, V.V., Garnov, S.V., Farcau, C., Carles, R., Warot-Fonrose, B., Guieu, V., Viau, G.: Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties. J. Phys. Chem. C 114, 15266–15273 (2010)CrossRefGoogle Scholar
  14. Kuznetsov, A.I., Miroshnichenko, A.E., Fu, Y.H., Zhang, J., Luk’yanchuk, B.: Magnetic light. Sci. Rep. 2, 492 (2012)ADSCrossRefGoogle Scholar
  15. Odachi, G., Sakamoto, R., Hara, K., Yagi, T.: Effect of air on debris formation in femtosecond laser ablation of crystalline Si. Appl. Surf. Sci. 282, 525–530 (2013)ADSCrossRefGoogle Scholar
  16. Paillard, V., Puech, P., Laguna, M.A., Carles, R., Kohn, B., Huisken, F.: Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals. J. Appl. Phys. 86, 1921–1924 (1999)ADSCrossRefGoogle Scholar
  17. Pavesi, L., Turan, R.: Silicon nanocrystals: fundamentals, synthesis and applications. Wiley, Weinheim (2010)CrossRefGoogle Scholar
  18. Richter, H., Wang, Z.P., Ley, L.: The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981)ADSCrossRefGoogle Scholar
  19. Rioux, D., Laferrière, M., Douplik, A., Shah, D., Lilge, L., Kabashin, A.V., Meunier, M.M.: Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers. J. Biomed. Opt. 14, 021010 (2009)ADSCrossRefGoogle Scholar
  20. Semaltianos, N.G., Logothetidis, S., Perrie, W., Romani, S., Potter, R.J., Edwardson, S.P., French, P., Sharp, M., Dearden, G., Watkins, K.G.: Silicon nanoparticles generated by femtosecond laser ablation in a liquid environment. J. Nanopart. Res. 12, 573–580 (2010)CrossRefGoogle Scholar
  21. Shao, Y., Spaepen, F., Turnbull, D.: An analysis of the formation of bulk amorphous silicon from the melt. Metall. Mater. Trans. A 29, 1825–1828 (1998)CrossRefGoogle Scholar
  22. Sugioka, K., Cheng, Y.: Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014)CrossRefGoogle Scholar
  23. Tull, B.R., Carey, J.E., Sheehy, M.A., Friend, C., Mazur, E.: Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas. Appl. Phys. A Mater. Sci. Process. 83, 341–346 (2006)ADSCrossRefGoogle Scholar
  24. Zabotnov, S.V., Ezhov, A.A., Lastovkina, M.A., Panov, V.I., Timoshenko, V.Y., Kashkarov, P.K.: others: formation of nanoparticles on the silicon surface under the effect of femtosecond laser pulses. Semiconductors 41, 998–1001 (2007)ADSCrossRefGoogle Scholar
  25. Zi, J., Zhang, K., Xie, X.: Comparison of models for Raman spectra of Si nanocrystals. Phys. Rev. B. 55, 9263–9266 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. I. Ageev
    • 1
  • D. V. Potorochin
    • 1
  • D. V. Sachenko
    • 1
  • G. V. Odintsova
    • 1
  1. 1.ITMO UniversitySaint PetersburgRussian Federation

Personalised recommendations