Evolution of thin silver films under exposure to laser pulses in the air

  • E. I. Ageev
  • I. R. Aminov
  • M. A. Baranov
  • Y. D. Golubev
  • G. V. Odintsova
  • P. V. Varlamov
Article
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies

Abstract

The process of formation and the characteristics of silver nanostructures created by pulsed laser annealing in the air are studied. Nanoparticles were obtained by way of irradiating thin silver films (62 and 175 nm) on the dielectric (glass) base with an excimer laser emission (λ = 193 nm). Created nanostructures were studied using the methods of scanning electron microscopy and optical spectrometry, the dependencies of the mean size of obtained nanoparticles and the position of their plasmonic resonance on the number of laser pulses (ranging from 270 to 30,000) were drawn out. Based on the shift of the plasmonic resonance, the use of given nanostructures as optical components with narrow-band extinction (for example, notch filter), the magnitude and center frequency of which can be specified in advance, is suggested.

Keywords

Silver nanoparticles Thin metal films Dewetting Nanosecond pulses Excimer laser 

Notes

Acknowledgements

The authors are grateful to S.I. Kudryashov for providing the samples. This work was partially supported by the Government of the Russian Federation (Grant No. 074-U01) for ITMO University.

References

  1. Arakelyan, S.M., Veiko, V.P., Kutrovskaya, S.V., Kucherik, A.O., Osipov, A.V., Vartanyan, T.A., Itina, T.E.: Reliable and well-controlled synthesis of noble metal nanoparticles by continuous wave laser ablation in different liquids for deposition of thin films with variable optical properties. J. Nanoparticle Res. 18, 155 (2016)ADSCrossRefGoogle Scholar
  2. Araújo, A., Mendes, M.J., Mateus, T., Vicente, A., Nunes, D., Calmeiro, T., Fortunato, E., Águas, H., Martins, R.: Influence of the substrate on the morphology of self-assembled silver nanoparticles by rapid thermal annealing. J. Phys. Chem. C. 120(32), 18235–18242 (2016)CrossRefGoogle Scholar
  3. Atanasov, P.A., Nedyalkov, N.N., Dikovska, A.O., Nikov, R., Amoruso, S., Wang, X., Bruzzese, R., Hirano, K., Shimizu, H., Terakawa, M., Obara, M.: Noble metallic nanostructures: preparation, properties, applications. J. Phys. Conf. Ser. 514, 12024 (2014)CrossRefGoogle Scholar
  4. Bae, C.H., Nam, S.H., Park, S.M.: Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl. Surf. Sci. 197–198, 628–634 (2002)CrossRefGoogle Scholar
  5. Boutinguiza, M., Comesaña, R., Lusquiños, F., Riveiro, A., Del Val, J., Pou, J.: Production of silver nanoparticles by laser ablation in open air. Appl. Surf. Sci. 336, 108–111 (2015)ADSCrossRefGoogle Scholar
  6. Brandt, T., Hoheisel, W., Iline, A., Stietz, F., Träger, F.: Influence of molecular adsorbate layers on the optical spectra of small metal particles. Appl. Phys. B. 65, 793–798 (1997)ADSCrossRefGoogle Scholar
  7. Chan, G.H., Zhao, J., Hicks, E.M., Schatz, G.C., Van Duyne, R.P.: Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007)ADSCrossRefGoogle Scholar
  8. Dell’Aglio, M., Mangini, V., Valenza, G., De Pascale, O., De Stradis, A., Natile, G., Arnesano, F., De Giacomo, A.: Silver and gold nanoparticles produced by pulsed laser ablation in liquid to investigate their interaction with Ubiquitin. Appl. Surf. Sci. 374, 297–304 (2015)Google Scholar
  9. Evanoff, D.D., Chumanov, G.: Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6, 1221–1231 (2005)CrossRefGoogle Scholar
  10. Grabiec, M., Wolak, A., Véron, O., Blondeau, J.-P., Pellerin, N., Allix, M., Pellerin, S., Dzierżkega, K.: Laser-driven precipitation and modification of silver nanoparticles in soda lime glass matrix monitored by on-line extinction measurements. Plasmonics 7, 279–286 (2012)CrossRefGoogle Scholar
  11. Hubenthal, F.: Nanoparticles and their tailoring with laser light. Eur. J. Phys. 30, S49–S61 (2009)CrossRefGoogle Scholar
  12. Le Bris, A., Maloum, F., Teisseire, J., Sorin, F.: Self-organized ordered silver nanoparticle arrays obtained by solid state dewetting. Appl. Phys. Lett. 105, 203102 (2014)CrossRefGoogle Scholar
  13. Leonov, N.B., Gladskikh, I.A., Polishchuk, V.A., Vartanyan, T.A.: Evolution of the optical properties and morphology of thin metal films during growth and annealing. Opt. Spectrosc. 119, 450–455 (2015)ADSCrossRefGoogle Scholar
  14. Mafune, F., Kohno, J., Takeda, Y., Kondow, T., Sawabe, H.: Formation and size control of sliver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B. 104, 9111–9117 (2000)CrossRefGoogle Scholar
  15. Metev, S.M., Veiko, V.P.: Laser-Assisted Microtechnology. Springer, New York (2013)Google Scholar
  16. Murray, P.T., Shin, E.: Formation of silver nanoparticles by through thin film ablation. Mater. Lett. 62, 4336–4338 (2008)CrossRefGoogle Scholar
  17. Nacharov, A.P., Nikonorov, N.V., Sidorov, A.I., Tsekhomskii, V.A.: Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses. Glas. Phys. Chem. 34, 693–699 (2008)CrossRefGoogle Scholar
  18. Phuoc, T.X., Soong, Y., Chyu, M.K.: Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Opt. Lasers Eng. 45, 1099–1106 (2007)CrossRefGoogle Scholar
  19. Qi, D., Paeng, D., Yeo, J., Kim, E., Wang, L., Chen, S., Grigoropoulos, C.P.: Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation. Appl. Phys. Lett. 108, 211602 (2016)ADSCrossRefGoogle Scholar
  20. Singh, U.B., Agarwal, D.C., Khan, S.A., Mohapatra, S., Tripathi, A., Avasthi, D.K.: A study on the formation of Ag nanoparticles on the surface and catcher by ion beam irradiation of Ag thin films. J. Phys. D. Appl. Phys. 45, 445304 (2012)ADSCrossRefGoogle Scholar
  21. Stuchinskaya, T., Moreno, M., Cook, M.J., Edwards, D.R., Russell, D.A.: Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem. Photobiol. Sci. 10, 822–831 (2011)CrossRefGoogle Scholar
  22. Takami, A., Kurita, H., Koda, S.: Laser-induced size reduction of noble metal particles. J. Phys. Chem. B. 103, 1226–1232 (1999)CrossRefGoogle Scholar
  23. Tanyeli, I., Nasser, H., Es, F., Bek, A., Turan, R.: Effect of surface type on structural and optical properties of Ag nanoparticles formed by dewetting. Opt. Exp. 21, A798–A807 (2013)ADSCrossRefGoogle Scholar
  24. Urusov, A.E., Petrakova, A.V., Kuzmin, P.G., Zherdev, A.V., Sveshnikov, P.G., Shafeev, G.A., Dzantiev, B.B.: Application of gold nanoparticles produced by laser ablation for immunochromatographic assay labeling. Anal. Biochem. 491, 65–71 (2015)CrossRefGoogle Scholar
  25. Vartanyan, T.A., Leonov, N.B.: Changes in morphology and optical properties of silver island films on transparent dielectric substrates under exposure to laser radiation. Opt. Spectrosc. 120, 628–632 (2016)ADSCrossRefGoogle Scholar
  26. Vollath, D.: Nanomaterials: An Introduction to Synthesis, Properties and Applications. Wiley-VCH, Weinheim (2008)Google Scholar
  27. Wenzel, T., Bosbach, J., Goldmann, A., Stietz, F., Träger, F.: Shaping nanoparticles and their optical spectra with photons. Appl. Phys. B. 69, 513–517 (1999)ADSCrossRefGoogle Scholar
  28. Zhang, A., Zhang, J., Fang, Y.: Photoluminescence from colloidal silver nanoparticles. J. Lumin. 128, 1635–1640 (2008)CrossRefGoogle Scholar
  29. Zhao, Y., Jiang, Y., Fang, Y.: Spectroscopy property of Ag nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 65, 1003–1006 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.ITMO UniversitySaint PetersburgRussia

Personalised recommendations