Local phase-structure modification inside of lithium silicate glass by combined double-wavelength laser action

Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies


The process of local structure modification inside of lithium silicate glass under the combined laser action of two different wavelengths is considered. The first step is laser irradiation of ultrashort laser pulses with 532 nm wavelength, which is used to create of nucleation centers inside of the optically transparent glass. The crystallization of the structural modification areas was carried out by a photothermal action of CO2 laser radiation with a 10.6 μm wavelength. The range of crystallization temperatures was defined and the kinetics of the phase transformations of the modified regions inside of the glass were studied. Duration of crystallization was about 10 min with a slow heating and 25 s at the fast heating to crystallization temperature.


Lithium disilicate Ultra-short laser pulses Modification of structure Microcracks Phase transformations Crystallization 



Authors are grateful to R.A. Zakoldaev for a discussion of some experimental results. Experimental studies have been supported by the Grant from leading universities of the RF (subsidy 074-U01).


  1. Avansi, W., Mastelaro, V.R., Andreeta, M.R.B.: Surface modification and crystallization of the BaO–B2O3–SiO2 glassy system using CO2 laser irradiation. J. Non-Cryst. Solids 354(2–9), 279–283 (2008). doi: 10.1016/j.jnoncrysol.2007.06.089 ADSCrossRefGoogle Scholar
  2. Bukharin, M., Khudyakov, D., Vartapetov, S.: Heat accumulation regime of femtosecond laser writing in fused silica and Nd: phosphate glass. Appl. Phys. A 119(1), 397–403 (2015)ADSCrossRefGoogle Scholar
  3. Evans, A., Rupp, J.L., Gauckler, L.J.: Crystallisation of Foturan® glass–ceramics. J. Eur. Ceram. Soc. 32(1), 203–210 (2012)CrossRefGoogle Scholar
  4. Feitosa, C.A.C., Mastelaro, V.R., Zanatta, A.R., Hernandes, A.C., Zanotto, E.D.: Crystallization, texture and second-harmonic generation in TiO2–BaO–B2O3 glasses. Opt. Mater. 28(8–9), 935–943 (2006). doi: 10.1016/j.optmat.2005.05.003 ADSCrossRefGoogle Scholar
  5. Ferreira, N.M., Costa, F.M., Nogueira, R.N., Graça, M.P.F.: Lithium niobate bulk crystallization promoted by CO2 laser radiation. Appl. Surf. Sci. 258(23), 9457–9460 (2012). doi: 10.1016/j.apsusc.2011.08.050 ADSCrossRefGoogle Scholar
  6. Gräf, S., Staupendahl, G., Gerling, P., Müller, F.A.: Optical constants n and κ of various technical and optical glasses at λ = 10.59 μm. J. Appl. Phys. 113(1), 013101 (2013). doi: 10.1063/1.4772619 ADSCrossRefGoogle Scholar
  7. He, F., Liao, Y., Lin, J., Song, J., Qiao, L., Cheng, Y., Sugioka, K.: Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass. Sensors 14(10), 19402–19440 (2014). doi: 10.3390/s141019402
  8. Helvajian, H., Fuqua, P.D., Hansen, W.W., Janson, S.: Laser microprocessing for nanosatellite microthruster applications. RIKEN Rev. 32, 57–63 (2001)Google Scholar
  9. Hnatovsky, C., Taylor, R., Rajeev, P., Simova, E., Bhardwaj, V., Rayner, D., Corkum, P.: Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl. Phys. Lett. 87(1), 014104 (2005)ADSCrossRefGoogle Scholar
  10. Höland, W., Apel, E., van ‘t Hoen, C., Rheinberger, V.: Studies of crystal phase formations in high-strength lithium disilicate glass–ceramics. J. Non-Cryst. Solids 352(38–39), 4041–4050 (2006). doi: 10.1016/j.jnoncrysol.2006.06.039 ADSCrossRefGoogle Scholar
  11. Iqbal, Y., Lee, W., Holland, D., James, P.: Metastable phase formation in the early stage crystallisation of lithium disilicate glass. J. Non-Cryst. Solids 224(1), 1–16 (1998)ADSCrossRefGoogle Scholar
  12. Karimelahi, S., Abolghasemi, L., Herman, P.R.: Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser. Appl. Phys. A 114(1), 91–111 (2014). doi: 10.1007/s00339-013-8155-8
  13. Kim, D.-S., Lee, J.-H., Lim, K.-S.: Spatially selective Er/Yb-doped CaF2 crystal formation by CO2 laser exposure. Appl. Surf. Sci. 334, 205–209 (2015). doi: 10.1016/j.apsusc.2014.10.001 ADSCrossRefGoogle Scholar
  14. Mahmoud, M.M., Thumm, M.: Crystallization of lithium disilicate glass using high frequency microwave processing. J. Eur. Ceram. Soc. 35(10), 2915–2922 (2015). doi: 10.1016/j.jeurceramsoc.2015.04.006 CrossRefGoogle Scholar
  15. Mahmoud, M.M., Folz, D.C., Suchicital, C.T., Clark, D.E.: Estimate of the crystallization volume fraction in lithium disilicate glass-ceramics using Fourier transform infrared reflectance spectroscopy. J. Eur. Ceram. Soc. 35(2), 597–604 (2015)CrossRefGoogle Scholar
  16. Masuda, M., Sugioka, K., Cheng, Y., Aoki, N., Kawachi, M., Shihoyama, K., Toyoda, K., Helvajian, H., Midorikawa, K.: 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl. Phys. A 76(5), 857–860 (2003)ADSCrossRefGoogle Scholar
  17. Müller, R., Zanotto, E., Fokin, V.: Surface crystallization of silicate glasses: nucleation sites and kinetics. J. Non-Cryst. Solids 274(1), 208–231 (2000)CrossRefGoogle Scholar
  18. Musgraves, J.D., Richardson, K., Jain, H.: Laser-induced structural modification, its mechanisms, and applications in glassy optical materials. Opt. Mater. Express 1(5), 921–935 (2011)CrossRefGoogle Scholar
  19. Sergeev, M., Veiko, V., Savochkin, D., Zakoldaev, R.: Reversible phase-structure modification of photostructurable glass ceramic by CO2-laser irradiation. Appl. Phys. A Mater. Sci. Process. 122(10), 1–8 (2016a). doi: 10.1007/s00339-016-0429-5 CrossRefGoogle Scholar
  20. Sergeev, M., Veiko, V., Zakoldaev, R.: Fast 3D laser-induced reversible phase-structure modification of photostructurable glass. Opt. Quantum Electron. 48(6), 1–12 (2016b). doi: 10.1007/s11082-016-0585-z CrossRefGoogle Scholar
  21. Soares, P., Zanotto, E., Fokin, V., Jain, H.: TEM and XRD study of early crystallization of lithium disilicate glasses. J. Non-Cryst. Solids 331(1), 217–227 (2003)ADSCrossRefGoogle Scholar
  22. Souza, G.P., Fokin, V.M., Rodrigues, C.F., Rodrigues, A.C.M., Zanotto, E.D., Lumeau, J., Glebova, L., Glebov, L.B.: Liquid-liquid phase separation in photo-thermo-refractive glass. J. Am. Ceram. Soc. 94(1), 145–150 (2011)CrossRefGoogle Scholar
  23. Stookey, S.: Chemical machining of photosensitive glass. Ind. Eng. Chem. 45(1), 115–118 (1953)CrossRefGoogle Scholar
  24. Veiko, V., Ignatyev, A., Nikonorov, N., Yakovlev, E., Orlov, D.: Crystallization phenomenon in different glass-ceramic and glass materials under CO2 laser action. In: Fundamentals of Laser Assisted Micro-and Nanotechnologies 2008, pp. 69850E–69857. International Society for Optics and Photonics (2008)Google Scholar
  25. Veiko, V., Kostyuk, G., Nikonorov, N., Rachinskaya, A., Yakovlev, E., Orlov, D.: Fast and reversible phase-structure modifications of glass-ceramic materials under CO2-laser action. In: Advanced Laser Technologies 2006. pp. 66060Q–66010. International Society for Optics and Photonics (2007)Google Scholar
  26. Veiko, V., Ageev, E., Sergeev, M., Petrov, A., Doubenskaia, M.: Photosensitive glass modification based on infrared CO2-laser irradiation. J. Laser Micro/Nanoeng. 8(2), 155–160 (2013). doi: 10.2961/jlmn.2013.02.0007 CrossRefGoogle Scholar
  27. Veiko, V., Kieu, Q., Nikonorov, N., Skiba, P.: On the reversibility of laser-induced phase-structure modification of glass-ceramics. J. Laser Micro/Nanoeng. 1(2), 149–154 (2006)CrossRefGoogle Scholar
  28. Veiko, V.P., Sergeev, M.M., Ageev, E.I., Petrov, A.A.: 3D express crystallization of Foturan glass at CO2 laser annealing on defects produced by picosecond laser. In: Fundamentals of Laser Assisted Micro-and Nanotechnologies 2013, vol. 9065. pp. 90650M–90657. International Society for Optics and Photonics (2013b)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations