Advertisement

Plasmon-assisted aggregation and spectral modification of the layered rhodamine 6G molecules

  • Aisylu Kamalieva
  • Nikita Toropov
  • Ivan Reznik
  • Tigran Vartanyan
Article
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies

Abstract

Rhodamine, a wide-used laser dye, is well-studied in the form of solution. Contrary to that, information on the properties of rhodamine in the thin film form is limited. Even less is known about modification of structural and optical properties of the rhodamine thin films in presence of the plasmonic nanoparticles. In this contribution we report on the results of experimental investigation of the rhodamine thin films doped with silver and gold nanoparticles supporting localized surface plasmon resonances. The nanoparticles were obtained on the quartz surfaces via physical vapor deposition. Then, part of the samples was covered up by the thin polymer film doped by rhodamine molecules using spin-coating technique. At the surfaces of other part of the samples the rhodamine thin films of different thicknesses were fabricated. In the near field of plasmonic nanoparticles, absorption and fluorescence spectra of the samples were enhanced and red-shifted. This enhancement was rationalized by the near fields effect and slight reduction of the decay time of the molecules. A new absorption and fluorescent band of rhodamine molecules which was red-shifted, is associated to J-aggregates formation and their fluorescence enhancement.

Keywords

Silver Gold Plasmon Rhodamine Molecular aggregates Fluorescence 

Notes

Acknowledgements

This work was partially supported by Russian Ministry of Education and Science (Project 2014/190), the Government of Russia (Grant 074-U01), and the Russian President’s Grant (MK 4694.2015.2).

References

  1. Bergman, D.J., Stockman, M.I.: Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003). doi: 10.1103/PhysRevLett.90.027402 ADSCrossRefGoogle Scholar
  2. Bujdak, J., Lyi, N., Kaneko, Y., Czimerova, A., Sasai, R.: Molecular arrangement of rhodamine 6G cations in the films of layered silicates: the effect of the layer charge. Phys. Chem. Chem. Phys. 5, 4680–4685 (2003). doi: 10.1039/B305699F CrossRefGoogle Scholar
  3. Fleischmann, M., Hendra, P.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). doi: 10.1016/0009-2614(74)85388-1 ADSCrossRefGoogle Scholar
  4. Haglund, R., Yang Jr., L., Magruder, R., Witting, J., Becker, K., Zuhr, R.A.: Picosecond nonlinear optical response of a Cu: silica nanocluster composite. Opt. Lett. 18, 373–375 (1993). doi: 10.1364/OL.18.000373 ADSCrossRefGoogle Scholar
  5. Kamalieva, A.N., Toropov, N.A., Vartanyan, T.A.: Enhanced fluorescence and aggregation of rhodamine molecules dispersed in a thin polymer film in the presence of plasmonic nanostructures. Proc. SPIE. 9884, 98843C (2016). doi: 10.1117/12.2227805 ADSCrossRefGoogle Scholar
  6. Kelly, K.L., Coronado, E., Zhao, L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003). doi: 10.1021/jp026731y CrossRefGoogle Scholar
  7. Lyon, L.A., Musick, M.D., Smith, P.C., Reiss, B.D., Pena, D.J., Natan, M.J.: Surface plasmon resonance of colloidal Au-modified gold films. Sens. Actuators B Chem. 54, 118–124 (1999). doi: 10.1016/S0925-4005(98)00329-3 CrossRefGoogle Scholar
  8. Martinez Martinez, V., Lopez, Arbeloa F., Banuelos Prieto, J., Lopez Arbeloa, I.: Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy. J. Phys. Chem. B 109, 7443–7450 (2005). doi: 10.1021/jp050440i CrossRefGoogle Scholar
  9. Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., Wiesner, U.: Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009). doi: 10.1038/nature08318 ADSCrossRefGoogle Scholar
  10. Novotny, L., Bian, R., Xie, X.: Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997). doi: 10.1103/PhysRevLett.79.645 ADSCrossRefGoogle Scholar
  11. Popov, O., Lirtsman, V., Davidov, D.: Surface plasmon excitation of amplified spontaneous emission from laser dye molecules embedded in polymer matrix. Appl. Phys. Lett. 95, 191108 (2009). doi: 10.1063/1.3262955 ADSCrossRefGoogle Scholar
  12. Rai, V.N., Srivastava, A.K., Mucherjee, C., Deb, S.K.: Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films. Appl. Opt. 51, 2606–2615 (2012). doi: 10.1364/AO.51.002606 ADSCrossRefGoogle Scholar
  13. Ritchie, G., Burstein, E.: Luminescence of dye molecules adsorbed at an Ag surface. Phys. Rev. B 24, 4843 (1981). doi: 10.1103/PhysRevB.24.4843 ADSCrossRefGoogle Scholar
  14. Sasai, R., Lyi, N., Fujita, T., Arbeloa, F.L., Martinez, V.M., Takagi, K., Itoh, H.: Luminescence properties of rhodamine 6G intercalated in surfactant/clay hybrid thin solid films. Langmuir 20, 4715–4719 (2004). doi: 10.1021/la049584z CrossRefGoogle Scholar
  15. Shinozaki, R., Nakato, T.: Humidity-dependent reversible aggregation of rhodamine 6G dye immobilized within layered niobate K4Nb6O17. Langmuir 20, 7583–7588 (2004). doi: 10.1021/la049354k CrossRefGoogle Scholar
  16. Toropov, N.A., Parfenov, P.S., Vartanyan, T.A.: Aggregation of cyanine dye molecules in the near fields of plasmonic nanoparticles excited by pulsed laser irradiation. J. Phys. Chem. C 118, 18010–18014 (2014). doi: 10.1021/jp505234j CrossRefGoogle Scholar
  17. Toropov, N.A., Kamalieva, A.N., Vartanyan, T.A.: Thin films of organic dyes with silver nanoparticles: enhancement and spectral shifting of fluorescence due to excitation of localised surface plasmons. Int. J. Nanotechnol. 13, 642–647 (2016). doi: 10.1504/IJNT.2016.079667 ADSCrossRefGoogle Scholar
  18. Walsh, C.B., Franses, E.I.: Ultrathin PMMA films spin-coated from toluene solutions. Thin Solid Films 429, 71–76 (2003). doi: 10.1016/S0040-6090(03)00031-2 ADSCrossRefGoogle Scholar
  19. Zidan, H.M., Abu-Elnader, M.: Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Phys. B Condens. Matter 355, 308–317 (2005). doi: 10.1016/j.physb.2004.11.023 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Aisylu Kamalieva
    • 1
  • Nikita Toropov
    • 1
  • Ivan Reznik
    • 1
  • Tigran Vartanyan
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations