Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer

  • Alexey I. Gribaev
  • Igor V. Pavlishin
  • Arsenii M. Stam
  • Ravil F. Idrisov
  • Sergey V. Varzhel
  • Kirill A. Konnov
Article
  • 135 Downloads
Part of the following topical collections:
  1. Fundamentals of Laser Assisted Micro- & Nanotechnologies

Abstract

An experimental setup for the fiber Bragg gratings (FBGs) inscription by use of Talbot interferometer has been described in this paper. A KrF excimer laser system Master Oscillator–Power Amplifier CL-7550 (Optosystems Ltd, Russia) was used as the UV radiation source in the experimental setup. In order to control laser beam quality, thus to provide FBGs effective writing, the laboratory setup includes: spectral width control system, based on Fabry–Perot interferometer; laser beam energy distribution control system; monitoring system of laser pulse energy density on the optical fiber; and control system of optical fiber to the laser beam relative position. FBGs of type I inscription results in a single-pulse and multi-pulse modes are presented.

Keywords

Talbot interferometer Fiber Bragg grating KrF excimer laser system Coherence Phase mask 

Notes

Acknowledgements

This work has been done at the ITMO University and supported by the Ministry of Education and Science of the Russian Federation (Unique identifier of the Project: RFMEFI57815X0109, Contract No. 14.578.21.0109).

References

  1. Arkhipov, S.V., Grehn, M., Varzhel, S.V., Strigalev, V.E., Griga, N., Eichler, H.J.: Point-by-point inscription of fiber Bragg gratings into birefringent optical fiber through protective acrylate coating by Ti:Sa femtosecond laser. Sci. Tech. J. Inf. Technol. Mech. Opt. 15(3), 373–377 (2015)Google Scholar
  2. Askins, C.G., Tsaim, T.-E., Williams, G.M., Puttnam, M.A., Bashkansky, Y.M., Friebel, E.J.: Fibre Bragg reflectors prepared by a single excimer pulse. Opt. Lett. 17(11), 833–835 (1992)ADSCrossRefGoogle Scholar
  3. Atezhev, V.V., Vartapetov, S.K., Zhukov, A.N., Kurzanov, M.A., Obidin, A.Z.: Excimer laser with highly coherent radiation. Quatum Electron. 33(8), 689–694 (2003)ADSCrossRefGoogle Scholar
  4. Bartelt, H., Schuster, K., Unger, S., Chojetzki, C., Rothhardt, M., Latka, I.: Single-pulse fiber Bragg gratings and specific coatings for use at elevated temperatures. Appl. Opt. 46(17), 3417–3424 (2007)ADSCrossRefGoogle Scholar
  5. Bureev, S.V., Dukel’skiĭ, K.V., Eron’yan, M.A., Komarov, A.V., Levit, L.G., Khokhlov, A.V., Zlobin, P.A., Strakhov, V.I.: Processing large blanks of anisotropic single-mode lightguides with elliptical cladding. J. Opt. Technol. 74(4), 297–298 (2007)CrossRefGoogle Scholar
  6. Fortin, V., Maes, F., Bernier, M., Bah, S.T., D’auteuil, M., Vallée, R.: Watt-level erbium-doped all-fiber laser at 3.44 μm. Opt. Lett. 41(3), 559–562 (2016)ADSCrossRefGoogle Scholar
  7. Hill, K.O., Malo, B., Bilodeau, F., Johnson, D.C., Albert, J.: Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62(10), 1035–1037 (1993)ADSCrossRefGoogle Scholar
  8. Huang, Y., Jivraj, J., Zhou, J., Ramjist, J., Wong, R., Gu, X., Yang, V.X.: Pulsed and CW adjustable 1942 nm singlemode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications. Opt. Express 24(15), 16674–16686 (2016)ADSCrossRefGoogle Scholar
  9. Koo, K.P., Tveten, A.B., Vohra, S.T.: Dense wavelength division multiplexing of fibre Bragg grating sensors using CDMA. Electron. Lett. 35(2), 165–167 (1999)CrossRefGoogle Scholar
  10. Köppe, E., Bartholmai, M., Daum, W., Gong, X., Holmann, D., Basedau, F., Schukar, V., Westphal, A., Sahre, M., Beck, U.: New self-diagnostic fiber optical sensor technique for structural health monitoring. Mater. Today Proc. 3, 1009–1013 (2016)CrossRefGoogle Scholar
  11. Lawson, N.J., Correia, R., James, S.W., Partridge, M., Staines, S.E., Gautrey, J.E., Garry, K.P., Holt, J.C., Tatam, R.P.: Development and application of optical fibre strain and pressure sensors for in-flight measurements. Meas. Sci. Technol. 27(104001), 1–17 (2016)Google Scholar
  12. Liaw, S.-K., Tsai, P.-S., Wang, H., Minh, H.L., Ghassemlooy, Z.: FBG-based reconfigurable bidirectional OXC for 8x10 Gb/s DWDM transmission. Optics Communications 358, 154–159 (2016)ADSCrossRefGoogle Scholar
  13. Martinez, A., Dubov, M., Khrushchev, I., Bennion, I.: Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40, 1170–1172 (2004)CrossRefGoogle Scholar
  14. Mayer, E.E., Gillett, D.A., Govorkov, S.: Fiber Bragg grating writing by interferometric or phase-mask methods using high-power excimer lasers. Fiber Integr. Opt. 18, 189–198 (1999)CrossRefGoogle Scholar
  15. Meltz, G., Morey, W.W., Glenn, W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14(15), 823–825 (1989)ADSCrossRefGoogle Scholar
  16. Rao, Y.J.: Recent progress in applications of in-fibre Bragg grating sensors. Opt. Lasers Eng. 31, 297–324 (1999)CrossRefGoogle Scholar
  17. Rothhardt, M., Chojetzki, C., Mueller, H.R.: High mechanical strength single-pulse draw tower gratings. Proc. SPIE 5579, 127–135 (2004)ADSCrossRefGoogle Scholar
  18. Shanker, R., Srivastava, P., Bhattacharya, M.: Performance analysis of 16-Channel 80-Gbps optical fiber communication system. In: International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT) (2016)Google Scholar
  19. Varzhel’, S.V., Kulikov, A.V., Meshkovskii, I.K., Strigalev, V.E.: Recording Bragg gratings in a birefringent optical fiber with a single 20-ns pulse of an excimer laser. J. Opt. Technol. 79(4), 257–259 (2012)CrossRefGoogle Scholar
  20. Varzhel’, S.V., Munko, A.S., Konnov, K.A., Gribaev, A.I., Kulikov, A.V.: Fiber Bragg gratings writing in hydrogenated birefringent optical fiber with an elliptical stress cladding. Opt. Zh. 83(10), 74–78 (2016)Google Scholar
  21. Wada, A., Tanaka, S., Takahashi, N.: Optical fiber vibration sensor using FBG Fabry–Perot interferometer with wavelength scanning and Fourier analysis. IEEE Sens. J. 12(1), 225–229 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexey I. Gribaev
    • 1
  • Igor V. Pavlishin
    • 1
  • Arsenii M. Stam
    • 1
  • Ravil F. Idrisov
    • 1
  • Sergey V. Varzhel
    • 1
  • Kirill A. Konnov
    • 1
  1. 1.Saint-Petersburg National Research University of Information Technologies, Mechanics and OpticsSaint-PetersburgRussia

Personalised recommendations