Advertisement

Multiple propagating modes of nanowire plasmonics

  • 156 Accesses

  • 1 Citations

Abstract

We investigate electromagnetic waves propagating along a metallic wire with a closer look at multiple propagating modes. To this goal, metallic loss is examined for its influence on a hybrid wave. The number of resonance modes is found to strongly depend on the rotational azimuthal mode indices. Based on the highest quality factor, selections are made among the multiple modes. We captured both divisions and mergers of the wave-number extents of the residual functions signifying the nonlinear dispersion relation. In addition, the migrations of the groups of local minima for multiple modes are illustrated from a viewpoint of quasi-temporal evolution. Furthermore, we illustrate collective behaviors of nanowire plasmonics in terms of two constituent waves and their interactions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Chang, D.E., Sørensen, A.S., Hemmer, P.R., Lukin, M.D.: Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007)

  2. Chen, J., Wang, X.: Plasmon mode characteristics of metallic nanowire in uniaxial anisotropic dielectric. Opt. Lett. 39, 4088–4091 (2014)

  3. Cho, C.-H., Aspetti, C.O., Turk, M.E., Kikkawa, J.M., Nam, S.-W., Agarwal, R.: Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nat. Mater. 10, 669–675 (2011)

  4. Etchegoin, P.G., Le Ru, E.C., Meyer, M.: An analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006)

  5. Fan, T.Y.: Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005)

  6. Gao, Y., Ren, G., Zhu, B., Liu, H., Lian, Y., Jian, S.: Analytical model for plasmon modes in graphene-coated nanowire. Opt. Express 22, 24322–24331 (2014)

  7. Goodfellow, K.M., Beams, R., Chakraborty, C., Novotny, L., Vamivakas, A.N.: Integrated nanophotonics based on nanowire plasmons and atomically thin material. Optica 1, 149–152 (2014)

  8. Huang, Y.J., Lu, W.T., Sridhar, S.: Nanowire waveguide made from extremely anisotropic metamaterials. Phys. Rev. A 77, 063836 (2008)

  9. Huard, S.: Polarization of light. In: Optical Fibres, pp. 264–273. Wiley, New York (1997)

  10. Ke, S., Wang, B., Qin, C., Long, H., Wang, K., Lu, P.: Exceptional Points and Asymmetric Mode Switching in Plasmonic Waveguides. (2016). arXiv:1608.00204

  11. Kuzmin, D.A., Bychkov, I.V., Shavrov, V.G.: Influence of graphene coating on speckle-pattern rotation of light in gyrotropic optical fiber. Opt. Lett. 40, 890–893 (2015)

  12. Liaw, J., Wu, P.-T.: Dispersion relation of surface plasmon wave propagating along a curved metal-dielectric interface. Opt. Express 16, 4945–4951 (2008)

  13. Liu, W., Wang, B., Ke, S., Qin, C., Long, H., Wang, K., Peixiang, L.: Enhanced plasmonic nanofocusing of terahertz waves in tapered graphene multilayers. Opt. Express 24, 14765–14780 (2016)

  14. Marcuse, D.: Theory of Dielectric Optical Waveguides (Quantum electronics-principles and applications), p. 62. Academic Press, New York (1974)

  15. Novotny, L., Hafner, C.: Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E 50, 4094 (1994)

  16. Qin, C., Wang, B., Huang, H., Long, H., Wang, K., Lu, P.: Low-loss plasmonic supermodes in graphene multilayers. Opt. Express 22, 25324–25332 (2014)

  17. Schroeter, U.S., Dereaux, A.: Surface plasmon polaritons on metal cylinders with dielectric core. Phys. Rev. B 64, 125420 (2001)

  18. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A., Kobayashi, T.: Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997)

  19. Wang, K., Mittleman, D.M.: Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. Phys. Rev. Lett. 96, 157401 (2006)

Download references

Acknowledgments

This study has been supported by the National Research Foundation (NRF) of Republic of Korea (Grant Numbers: NRF-2011-0023612 and NRF-2015R1D1A1A01056698).

Author information

Correspondence to Hyoung-In Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (MP4 1626 kb)

Supplementary material 3 (MP4 1973 kb)

Supplementary material 4 (MP4 2201 kb)

Supplementary material 5 (MP4 1628 kb)

Supplementary material 6 (MP4 2215 kb)

Supplementary material 7 (MP4 2517 kb)

Supplementary material 1 (DOCX 15966 kb)

Supplementary material 2 (MP4 1626 kb)

Supplementary material 3 (MP4 1973 kb)

Supplementary material 4 (MP4 2201 kb)

Supplementary material 5 (MP4 1628 kb)

Supplementary material 6 (MP4 2215 kb)

Supplementary material 7 (MP4 2517 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Mok, J., Kuzmin, D.A. et al. Multiple propagating modes of nanowire plasmonics. Opt Quant Electron 48, 499 (2016). https://doi.org/10.1007/s11082-016-0772-y

Download citation

Keywords

  • Plasmonics
  • Electromagnetic waves
  • Nanowire
  • Azimuthal mode index
  • Metallic loss
  • Merger
  • Division
  • Evolution