Picosecond laser fabrication of microchannels inside Foturan glass at CO2 laser irradiation and following etching

  • M. M. Sergeev
  • V. P. Veiko
  • E. Y. Tiguntseva
  • R. O. Olekhnovich
Article
Part of the following topical collections:
  1. Laser Technologies and Laser Applications

Abstract

In this work, the formation of hollow-type microchannels in the bulk of a photostructurable glass of the brand Foturan is proposed. It is based on the chemical dissolution of crystallized areas, which are formed as a result of the action of picosecond laser pulses and photothermal treatment produced by CO2 laser irradiation. A speed of formation of microchannels was estimated. Microchannels formation features at each stage of laser irradiation are discussed, and the dependence of microchannels characteristics (size, shape and roughness of inner walls) on laser processing and chemical etching parameters were evaluated as well.

Keywords

Photostructurable glass Picosecond laser pulses Photothermal treatment Phase transformation Chemical etching 

References

  1. Ageev, E., Kieu, K., Veiko, V.: Modification of photosensitive glass–ceramic Foturan by ultrashort laser pulses. In: Fundamentals of Laser Assisted Micro-and Nanotechnologies, pp. 79960R-79960R-79966. International Society for Optics and Photonics (2010)Google Scholar
  2. Berezhnoi, A.I.: Glass–Ceramics and Photo-Sitalls. Springer, US (2012)Google Scholar
  3. Cheng, Y., Sugioka, K., Masuda, M., Toyoda, K., Kawachi, M., Shihoyama, K., Midorikawa, K.: 3D microstructuring inside Foturan glass by femtosecond laser. Riken Rev. 50, 101–106 (2003)Google Scholar
  4. Du, D., Liu, X., Korn, G., Squier, J., Mourou, G.: Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64(23), 3071–3073 (1994)ADSCrossRefGoogle Scholar
  5. Ehrt, D.: Photoactive glasses and glass ceramics. IOP Conf. Ser. Mater. Sci. Eng. 21, 1–9 (2011). doi:10.1088/1757-899x/21/1/012001 CrossRefGoogle Scholar
  6. Evans, A., Rupp, J.L., Gauckler, L.J.: Crystallisation of Foturan® glass–ceramics. J. Eur. Ceram. Soc. 32(1), 203–210 (2012)CrossRefGoogle Scholar
  7. Fernández-Pradas, J., Serrano, D., Bosch, S., Morenza, J., Serra, P.: 3D features of modified photostructurable glass–ceramic with infrared femtosecond laser pulses. Appl. Surf. Sci. 257(12), 5219–5222 (2011a)ADSCrossRefGoogle Scholar
  8. Fernández-Pradas, J., Serrano, D., Serra, P., Morenza, J.: Laser fabricated microchannels inside photostructurable glass–ceramic. Appl. Surf. Sci. 255(10), 5499–5502 (2009)ADSCrossRefGoogle Scholar
  9. Fernández-Pradas, J., Serrano, D., Morenza, J., Serra, P.: Microchannel formation through Foturan® with infrared femtosecond and ultraviolet nanosecond lasers. J. Micromech. Microeng. 21(2), 1–8 (2011b). doi:10.1088/0960-1317/21/2/025005 CrossRefGoogle Scholar
  10. He, F., Liao, Y., Lin, J., Song, J., Qiao, L., Cheng, Y., Sugioka, K.: Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass. Sensors 14(10), 19402–19440 (2014)CrossRefGoogle Scholar
  11. Karimelahi, S., Abolghasemi, L., Herman, P.: Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser. Appl. Phys. A 114(1), 91–111 (2014)ADSCrossRefGoogle Scholar
  12. Kiyama, S., Matsuo, S., Hashimoto, S., Morihira, Y.: Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates. J. Phys. Chem. C 113(27), 11560–11566 (2009)CrossRefGoogle Scholar
  13. Lewis, M., Metcalf-Johansen, J., Bell, P.: Crystallization mechanisms in glass–ceramics. J. Am. Ceram. Soc. 62(5–6), 278–288 (1979)CrossRefGoogle Scholar
  14. Livingston, F., Adams, P., Helvajian, H.: Influence of cerium on the pulsed UV nanosecond laser processing of photostructurable glass ceramic materials. Appl. Surf. Sci. 247(1), 526–536 (2005)ADSCrossRefGoogle Scholar
  15. Livingston, F.E., Helvajian, H.: Photophysical processes that activate selective changes in photostructurable glass ceramic material properties. In: Dubowski, J.J., Tanev, S. (eds.) Photon-Based Nanoscience and Nanobiotechnology, pp. 225–265. Springer, Netherlands (2006)CrossRefGoogle Scholar
  16. Menegatti, E., Berardi, D., Messina, M., Ferrante, I., Giachino, O., Spagnolo, B., Restagno, G., Cognolato, L., Roccatello, D.: Lab-on-a-chip: emerging analytical platforms for immune-mediated diseases. Autoimmun. Rev. 12(8), 814–820 (2013). doi:10.1016/j.autrev.2012.11.005 CrossRefGoogle Scholar
  17. Nacharov, A., Nikonorov, N., Sidorov, A., Tsekhomskii, V.: Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses. Glass Phys. Chem. 34(6), 693–699 (2008). doi:10.1134/s1087659608060060 CrossRefGoogle Scholar
  18. Stillman, J., Judy, J., Helvajian, H.: Aspect ratios, sizes, and etch rates in photostructurable glass–ceramic. In: MOEMS-MEMS 2008 Micro and Nanofabrication, pp. 68820J-68820J-68811. International Society for Optics and Photonics (2008a)Google Scholar
  19. Stillman, J., Judy, J., Helvajian, H.: Laser alteration of the mechanical properties of photostructurable glass–ceramic. In: Lasers and Applications in Science and Engineering, pp. 68790E-68790E-68797. International Society for Optics and Photonics (2008b)Google Scholar
  20. Sugioka, K., Cheng, Y.: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications. Springer, New York (2014)CrossRefGoogle Scholar
  21. Veiko, V., Ageev, E., Sergeev, M., Petrov, A., Doubenskaia, M.: Photosensitive glass modification based on infrared CO2-laser irradiation. J. Laser Micro Nanoeng. 8(2), 155–160 (2013)CrossRefGoogle Scholar
  22. Veiko, V., Kieu, Q., Nikonorov, N., Shur, V., Luches, A., Rho, S.: Laser-induced modification of glass–ceramics microstructure and applications. Appl. Surf. Sci. 248(1), 231–237 (2005)ADSCrossRefGoogle Scholar
  23. Veiko, V., Sergeev, M., Ageev, E., Petrov, A.: 3D express crystallization of Foturan glass at CO2 laser annealing on defects produced by picosecond laser. In: Fundamentals of Laser Assisted Micro-and Nanotechnologies, pp. 90650M-90650M-90657. International Society for Optics and Photonics (2013)Google Scholar
  24. Veiko, V., Yakovlev, E., Shakhno, E.: Physical mechanisms of CO2-laser-induced rapid structural changes in glass–ceramics. Quantum Electron. 39(2), 185–190 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. M. Sergeev
    • 1
  • V. P. Veiko
    • 1
  • E. Y. Tiguntseva
    • 1
  • R. O. Olekhnovich
    • 1
  1. 1.ITMO UniversitySaint PetersburgRussia

Personalised recommendations