Electroluminescent cooling mechanism in InGaN/GaN light-emitting diodes

Article
  • 162 Downloads
Part of the following topical collections:
  1. Numerical Simulation of Optoelectronic Devices 2016

Abstract

GaN-based light-emitting diodes (LEDs) are able to emit photons of higher energy than the injected electrons, resulting in an above-unity electrical efficiency. This phenomenon is generally attributed to heat extraction from the crystal lattice. In good agreement with measurements, we investigate the microscopic mechanism and the magnitude of such electroluminescent cooling by advanced numerical simulation including all relevant heat transfer mechanisms. Peltier cooling near the InGaN light-emitting layer is found to reduce the internal LED temperature rise significantly.

Keywords

Light-emitting diode InGaN/GaN LED Electroluminescent cooling Electroluminescent refrigeration Peltier cooling 

References

  1. Auf der Maur, M., Galler, B., Pietzonka, I., Strassburg, M., Lugauer, H., Di Carlo, A.: Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes. Appl. Phys. Lett. 105, 133504 (2015)ADSCrossRefGoogle Scholar
  2. Galler, B.T.: Ph.D. Thesis, Albert Ludwigs University, Freiburg, Germany, 2014 (in German)Google Scholar
  3. Han, P., Jin, K., Zhou, Y.-L., Lu, H.-B., Yang, G.-Z.: Numerical designing of semiconductor structure for optothermionic refrigeration. J. Appl. Phys. 101, 014506 (2007)ADSCrossRefGoogle Scholar
  4. Heikkilä, O., Oksanen, J., Tulkki, J.: The challenge of unity wall plug efficiency: the effects of internal heating on the efficiency of light emitting diodes. J. Appl. Phys. 107, 033105 (2010)ADSCrossRefGoogle Scholar
  5. Hurni, C.A., David, A., Cich, M.J., Aldaz, R.I., Ellis, B., Huang, K., Tyagi, A., DeLille, R.A., Craven, M.D., Steranka, F.M., Krames, M.R.: Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett. 106, 031101 (2015)ADSCrossRefGoogle Scholar
  6. Lee, K.C., Yen, S.T.: Photon recycling effect on electroluminescent refrigeration. J. Appl. Phys. 111, 014511 (2012)ADSCrossRefGoogle Scholar
  7. Lehovec, K., Accardo, C.A., Jamgochian, E.: Light emission produced by current injected into a green silicon-carbide crystal. Phys. Rev. 89, 20–25 (1953)ADSCrossRefGoogle Scholar
  8. Pipe, K.P., Ram, R.J., Shakouri, A.: Bias-dependent Peltier coefficient and internal cooling in bipolar devices. Phys. Rev. 66, 125316 (2002)ADSCrossRefGoogle Scholar
  9. Piprek, J.: Semiconductor Optoelectronic Devices—Introduction to Physics and Simulation. Academic Press, San Diego (2003)Google Scholar
  10. Sztein, A., Haberstroh, J., Bowers, J.E., DenBaars, S.P., Nakamura, S.: Calculated thermoelectric properties of InxGal − xN, InxAl1 − xN, and AlxGa1 − xN. J. Appl. Phys. 113, 183707 (2013)ADSCrossRefGoogle Scholar
  11. Weisbuch, C., Piccardo, M., Martinelli, L., Iveland, J., Peretti, J., Speck, J.S.: The efficiency challenge of nitride light-emitting diodes for lighting. Phys. Status Solidi A 212, 899–913 (2015)CrossRefGoogle Scholar
  12. Xue, J., Zhao, Y., Oh, S.-H., Herrington, W.F., Speck, J.S., DenBaars, S.P., Nakamura, S., Ram, R.J.: Thermally enhanced blue light-emitting diode. Appl. Phys. Lett. 107, 121109 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.NUSOD Institute LLCNewarkUSA
  2. 2.Crosslight Software Inc.VancouverCanada

Personalised recommendations