Enabling the study of photons orbital angular momentum for optical communications

Orbital angular momentum carrying beam modulation and demodulation using twsited nematic liquid crystal spatial light modulators
Part of the following topical collections:
  1. Laser Technologies and Laser Applications


The internet data traffic capacity is reaching the limits imposed by optical fiber nonlinear effects, having almost exhausted the available degrees of freedom needed to orthogonally multiplex data. Therefore, new methods should be developed to avoid the capacity crunch. The orbital angular momentum (OAM) of photons may be used as an additional degree of freedom. In this article, in order to enable the study of applications of OAM for optical communications, an experimental setup for modulation and demodulation of free space OAM carrying beams was conceived based on twsited nematic spatial light modulator technology. This work assesses the viability of this technology pointing that this low cost solution can enable the application of OAM for optical communications.


OAM Optical communications TN SLM Shack–Hartmann WFS 


  1. Abramochkin, E., Volostnikov, V.: Beam transformations and nontransformed beams. Opt. Commun. 83(1), 123–135 (1991)ADSCrossRefGoogle Scholar
  2. Allen, L., Beijersbergen, M.W., Spreeuw, R.J., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45(11), 8185–8189 (1992)ADSCrossRefGoogle Scholar
  3. Averbuch, A., Coifman, R.R., Donoho, D.L., Elad, M., Israeli, M.: Fast and accurate Polar Fourier transform. Appl. Comput. Harmon. Anal. 21(2), 145–167 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. Berry, M.V.: Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A Pure Appl. Opt. 6(2), 259–268 (2004)ADSCrossRefGoogle Scholar
  5. Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A.E., Ramachandran, S.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140), 1545–1548 (2013)ADSCrossRefGoogle Scholar
  6. Goodman, J.W., Gustafson, S.C.: Introduction to Fourier Optics, vol. 35, 2nd edn. International Society for Optics and Photonics, Bellingham (1996)Google Scholar
  7. Krenn, M., Fickler, R., Fink, M., Handsteiner, J., Malik, M., Scheidl, T., Ursin, R., Zeilinger, A.: Communication with spatially modulated light through turbulent air across Vienna. New J. Phys. 16(11), 1–11 (2014)CrossRefGoogle Scholar
  8. Molina-Terriza, G., Torres, J.P., Torner, L.: Twisted photons. Nat. Phys. 3(5), 305–310 (2007)CrossRefGoogle Scholar
  9. Moreno, I., Davis, J.A., Fernández-Pousa, C.R., Franich, D.J.: Polarization eigenvectors for reflective twisted nematic liquid crystal displays. Opt. Eng. 40(10), 2220–2226 (2001)ADSCrossRefGoogle Scholar
  10. Padgett, M.J., Miatto, F.M., Lavery, M., Zeilinger, A., Boyd, R.W.: Divergence of an orbital-angular-momentum-carrying beam upon propagation. (2), 023011 (2014). arXiv:1410.8722
  11. Pezzaniti, J.L., Chipman, R.A.: Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states. Opt. Lett. 18(18), 1564–1567 (1993)ADSCrossRefGoogle Scholar
  12. Picart, P., Li, J.: Digital Holography. Wiley, New York (2013)MATHGoogle Scholar
  13. Preece, D.: Novel Uses of Spatial Light Modulators in Optical Tweezers. Ph.D. thesis (2011)Google Scholar
  14. Ruiz, A.M.: Accurate predictive model for twisted nematic liquid crystal devices: application for generating programmable apodizers and Fresnel lenses (2001)Google Scholar
  15. Wang, J., Yang, J.Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M., Willner, A.E.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6(7), 488–496 (2012)ADSCrossRefGoogle Scholar
  16. Willner, A.E., Huang, H., Yan, Y., Ren, Y., Ahmed, N., Xie, G., Bao, C., Li, L., Cao, Y., Zhao, Z., Wang, J., Lavery, M.P.J., Tur, M., Ramachandran, S., Molisch, A.F., Ashrafi, N., Ashrafi, S.: Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 7(1), 1–42 (2015)CrossRefGoogle Scholar
  17. Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3(2), 161–204 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Instituto de Telecomunicações, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Department of Physics, IPFN, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.Department of Electrical and Computer Engineering, Instituto de Telecomunicações, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations