Measurement of human serum albumin concentration using Raman spectroscopy setup

  • Dmitry N. Artemyev
  • Valery P. Zakharov
  • Igor L. Davydkin
  • Julia A. Khristoforova
  • Anastasia A. Lykina
  • Vadim N. Konyukhov
  • Tatiana P. Kuzmina
Article

Abstract

This work is dedicated to the measurement of plasma proteins concentration in liquid solutions using Raman spectroscopy setup. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm−1 for different protein fractions and concentrations. Partial least squares regression analysis was used for determination of correlation coefficients. It has been shown that the proposed method represents structure and biochemical composition of albumin and immunoglobulins A and G, and that albumin concentration may be measured with an accuracy of 6–8 g/L.

Keywords

Raman spectroscopy PLS regression Blood proteins Albumin Immunoglobulin 

References

  1. Anderson, N.L., Anderson, N.G.: The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics MCP 1(11), 845–867 (2002)CrossRefGoogle Scholar
  2. Berger, A.J., Koo, T.W., Itzkan, I., Horowitz, G., Feld, M.S.: Multi-component blood analysis by near-infrared Raman spectroscopy. Appl. Opt. 38(13), 2916–2926 (1999)ADSCrossRefGoogle Scholar
  3. Dingari, N.C., Horowitz, G.L., Kang, J.W., Dasari, R.R., Barman, I.: Raman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation. PLoS ONE 7(2), e32406 (2012). doi:10.1371/journal.pone.0032406 ADSCrossRefGoogle Scholar
  4. Enejder, A.M., Koo, T.W., Oh, J., Hunter, M., Sasic, S., Feld, M.S., Horowitz, G.L.: Blood analysis by Raman spectroscopy. Opt. Lett. 27(22), 2004–2006 (2002)ADSCrossRefGoogle Scholar
  5. Farrugia, A.: Albumin usage in clinical medicine: tradition or therapeutic? Transfus. Med. Rev. 24(1), 53–63 (2010)CrossRefGoogle Scholar
  6. Gonzàlez-Quintela, A., Alende, M.R., Gamallo, R., Gonzàlez-Gil, P., López-Ben, S., Tomé, S., Otero, E., Torre, J.A.: Serum immunoglobulins (IgG, IgA, IgM) in chronic hepatitis C. A comparison with non-cirrhotic alcoholic liver disease. Hepatogastroenterology 50(54), 2121–2126 (2003)Google Scholar
  7. Kengne-Momo, R.P., Daniel, Ph, Lagarde, F., Jeyachandran, Y.L., Pilard, J.F., Durand-Thouand, M.J., Thouand, G.: Protein interactions investigated by the Raman spectroscopy for biosensor applications. Int. J. Spectrosc. 2012, 462901 (2012)CrossRefGoogle Scholar
  8. Rao, S., Bálint, S., Cossins, B., Guallar, V., Petrov, D.: Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. Biophys. J. 96(1), 209–216 (2009)CrossRefGoogle Scholar
  9. Rhoades, R.A., Pflanzer, R.G.: Human Physiology, 4th edn. Thomson Learning, Stockholm (2002)Google Scholar
  10. Sjöström, M., Wold, S., Lindberg, W., Persson, J.-Å., Martens, H.: A multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables. Anal. Chim. Acta 150, 61–70 (1983)CrossRefGoogle Scholar
  11. Wang, H., Lee, A.M., Lui, H., McLean, D.I., Zeng, H.: A method for accurate in vivo micro-Raman spectroscopic measurements under guidance of advanced microscopy imaging. Sci. Rep. 3, 1890 (2013). doi:10.1038/srep01890 ADSGoogle Scholar
  12. Wang, J., Lin, D., Lin, J., Yu, Y., Huang, Z., Chen, Y., Lin, J., Feng, S., Li, B., Liu, N., Chen, R.: Label-free detection of serum proteins using surface-enhanced Raman spectroscopy for colorectal cancer screening. J. Biomed. Opt. 19(8), 087003 (2014). doi:10.1117/1.JBO.19.8.087003 ADSCrossRefGoogle Scholar
  13. Wold, S., Sjostrom, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 58(2), 109–130 (2001)CrossRefGoogle Scholar
  14. Zakharov, V.P., Bratchenko, I.A., Myakinin, O.O., Artemyev, D.N., Kornilin, D.V., Kozlov, S.V., Moryatov, A.A.: Multimodal diagnosis and visualisation of oncologic pathologies. Quantum Electron. 44(8), 726–731 (2014)ADSCrossRefGoogle Scholar
  15. Zakharov, V.P., Bratchenko, I.A., Artemyev, D.N., Myakinin, O.O., Kornilin, D.V., Kozlov, S.V., Moryatov, A.A.: Comparative analysis of combined spectral and optical tomography methods for detection of skin and lung cancers. J. Biomed. Opt. 20(2), 025003 (2015). doi:10.1117/1.JBO.20.2.025003. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dmitry N. Artemyev
    • 1
  • Valery P. Zakharov
    • 1
  • Igor L. Davydkin
    • 2
  • Julia A. Khristoforova
    • 1
  • Anastasia A. Lykina
    • 1
  • Vadim N. Konyukhov
    • 1
  • Tatiana P. Kuzmina
    • 2
  1. 1.Laser and Biotechnical Systems DepartmentSamara State Aerospace UniversitySamaraRussia
  2. 2.Department of Hospital Therapy and TransfusionSamara State Medical UniversitySamaraRussia

Personalised recommendations