Laser thermochemical writing: pursuing the resolution

Article
Part of the following topical collections:
  1. Laser Technologies and Laser Applications

Abstract

Laser thermochemical writing is a powerful technique for direct recording of planar structures performed by a local laser oxidation of thin metal films. It is commonly used for producing diffraction optical elements, and a main challenge in this field is a necessity of a resolution enhancement. The presented article provides a theoretical analysis and the discussion of physical–chemical and processing factors that should be taken into account to raise a resolution. It is shown for example that writing on a thin chromium film by multiple low-power laser beams simultaneously few times subsequently allows to provide a recording with high resolution (up to 4 lines per µm) and productivity.

Keywords

Laser thermochemical writing Laser direct writing Thin films Laser-induced oxidation Ultrahigh resolution 

Notes

Acknowledgments

Authors would like to thank A.G. Poleschuk’s research group for conducting the experimental work that underlies the theoretical modeling. The work is supported by grants from Russian Foundation for Basic Research 14-29-07227 and from Russian Science Foundation 14-12-00351.

References

  1. Bäuerle, D.W.: Laser Processing and Chemistry. Springer, Berlin (2011)CrossRefGoogle Scholar
  2. Bunkin, F.V., Kirichenko, N.A., Luk’yanchuk, B.S.: Thermochemical action of laser radiation. Sov. Phys. Uspekhi. 25, 662–687 (1982)ADSCrossRefGoogle Scholar
  3. Gorbunov, A.A., Eichler, H., Pompe, W., Huey, B.: Lateral self-limitation in the laser-induced oxidation of ultrathin metal films. Appl. Phys. Lett. 69, 2816–2818 (1996)ADSCrossRefGoogle Scholar
  4. Guo, C.F., Zhang, J., Miao, J., Fan, Y., Liu, Q.: MTMO grayscale photomask. Opt. Express 18, 2621–2631 (2010)ADSCrossRefGoogle Scholar
  5. Kim, J.-G., Cho, S.-H., Je, T.-J., Choi, D.-S., Whang, K.-H.: Surface pattern formation on Cr thin film with ultrafast laser pulse. J. Appl. Phys. A 101, 345–348 (2010)ADSCrossRefGoogle Scholar
  6. Koronkevich, V.P., Poleshchuk, A.G., Churin, E.G., Yurlov, Y.I.: Laser thermochemical technology of synthesis of diffractive optical elements in chromium films. Quantum Electron. 12, 755–761 (1985)Google Scholar
  7. Libenson, M.N.: Laser-Induced Optical and Thermal Processes in Condensed Matter and Their Mutual Influence. Nauka, St.Petersburg (2007)Google Scholar
  8. Mansoor, S.B., Yilbas, B.S.: Laser short-pulse heating of silicon–aluminum thin films. Opt. Quantum Electron. 42, 601–618 (2011)CrossRefGoogle Scholar
  9. Metev, S., Savtchenko, S.: Thermochemical laser lithography on the basis of local oxidation of thin metal films. Interfaces Under Laser Irradiat. 134, 371–384 (1987)CrossRefGoogle Scholar
  10. Poleshchuk, A.G., Churin, E.G., Koronkevich, V.P., Korolkov, V.P.: Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure. Appl. Opt. 38, 1295–1301 (1999)ADSCrossRefGoogle Scholar
  11. Shakhno, E.A., Sinev, D.A., Kulazhkin, A.M.: Features of laser oxidation of thin films of titanium. J. Opt. Technol. 81, 298–302 (2014)CrossRefGoogle Scholar
  12. Ursu, I., Birjega, M.I., Dinescu, M., Mihailescu, I.N., Popescu-Pogrion, N., Ribco, L., Prokhorov, A.M., Konov, V.I., Tokarev, V.N.: Excimer laser induced crystallization and oxidation of amorphous Cr thin films. Appl. Surf. Sci. 36, 640–647 (1989)ADSCrossRefGoogle Scholar
  13. Veiko, V.P., Kotov, G.A., Libenson, M.N., Nikitin, M.N.: Thermochemical action of laser radiation. Sov. Phys. Dokl. 18, 83–85 (1973)ADSGoogle Scholar
  14. Veiko, V.P., Tuchkova, E.A., Yakovlev, E.B.: On the resolution of the laser lithography on thin metal films. Sov. J. Quantum Electron. 14, 449–452 (1984)ADSCrossRefGoogle Scholar
  15. Veiko, V.P., Shakhno, E.A., Poleshchuk, A.G., Korolkov, V.P., Matyzhonok, V.N.: Local laser oxidation of thin metal films: ultra-resolution in theory and in practice. J. Laser Micro/Nanoeng. 3, 201–205 (2008)CrossRefGoogle Scholar
  16. Veiko, V.P., Sinev, D.A., Shakhno, E.A., Poleshchuk, A.G., Sametov, A.R., Sedukhin, A.G.: Researching the features multibeam laser thermochemical recording of diffractive microstructures. Comput. Opt. 36, 562–571 (2012a)Google Scholar
  17. Veiko, V.P., Jarchuk, M.V., Ivanov, A.I.: Diffusionless oxidation and structure modification of thin Cr films by the action of ultrashort laser pulses. Laser Phys. 22, 1310–1316 (2012b)ADSCrossRefGoogle Scholar
  18. Veiko, V.P., Shakhno, E.A., Sinev, D.A.: The increasement of resolution of laser thermochemical direct writing at thin chromium films by using the repeated processing. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie 56, 57–61 (2013)Google Scholar
  19. Veiko, V.P., Poleshchuk, A.G.: Laser-induced local oxidation of thin metal films: physical fundamentals and applications. In: Veiko, V.P., Konov, V.I. (eds.) Fundamentals of Laser-Assisted Micro- and Nanotechnologies, pp. 149–171. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  20. Wang, Y., Wang, R., Guo, C., Miao, J., Tian, Y., Renb, T., Liu, Q.: Path-directed and maskless fabrication of ordered TiO2 nanoribbons. Nanoscale 4, 1545–1548 (2012)ADSCrossRefGoogle Scholar
  21. Yilbas, B.S., Mansoor, S.B.: Laser short-pulse heating of silicon–aluminum thin films. Opt. Quantum Electron. 44, 437–457 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Laser Technologies and InstrumentationNational Research University of Information Technologies, Mechanics and OpticsSaint PetersburgRussian Federation

Personalised recommendations